Photonics Research, 2020, 8 (7): 07001189, Published Online: Jun. 22, 2020  

All-optical PtSe2 silicon photonic modulator with ultra-high stability Download: 827次

Author Affiliations
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2 Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
3 e-mail: jjdong@mail.hust.edu.cn
4 e-mail: hzhang@szu.edu.cn
Copy Citation Text

Kangkang Wei, Delong Li, Zhitao Lin, Zhao Cheng, Yuhan Yao, Jia Guo, Yunzheng Wang, Yupeng Zhang, Jianji Dong, Han Zhang, Xinliang Zhang. All-optical PtSe2 silicon photonic modulator with ultra-high stability[J]. Photonics Research, 2020, 8(7): 07001189.

References

[1] P. Minzioni, C. Lacava, T. Tanabe, J. Dong, X. Hu, G. Csaba, W. Porod, G. Singh, A. E. Willner, A. Almaiman. Roadmap on all-optical processing. J. Opt., 2019, 21: 063001.

[2] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435: 325-327.

[3] X. Wang, A. Lentine, C. DeRose, A. L. Starbuck, D. Trotter, A. Pomerene, S. Mookherjea. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect. Opt. Express, 2016, 24: 23081-23093.

[4] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics, 2019, 13: 359-364.

[5] W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang. Ultrafast all-optical graphene modulator. Nano Lett., 2014, 14: 955-959.

[6] Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen, W. Huang, Z. Liang, L. Wu, Y. Ge, Y. Song. All‐optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev., 2018, 12: 1800016.

[7] K. Wu, C. Guo, H. Wang, X. Zhang, J. Wang, J. Chen. All-optical phase shifter and switch near 1550  nm using tungsten disulfide (WS2) deposited tapered fiber. Opt. Express, 2017, 25: 17639-17649.

[8] F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9: 780-793.

[9] F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam. Two-dimensional material nanophotonics. Nat. Photonics, 2014, 8: 899-907.

[10] K. Wu, Y. Wang, C. Qiu, J. Chen. Thermo-optic all-optical devices based on two-dimensional materials. Photon. Res., 2018, 6: C22-C28.

[11] X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, J. Zhao. Graphene-assisted all-fiber phase shifter and switching. Optica, 2015, 2: 468-471.

[12] Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, H. Zhang. MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol., 2019, 4: 1800532.

[13] J. S. Fandiño, P. Muñoz, D. Doménech, J. Capmany. A monolithic integrated photonic microwave filter. Nat. Photonics, 2017, 11: 124-129.

[14] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 2019, 13: 80-90.

[15] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson. All-optical control of light on a silicon chip. Nature, 2004, 431: 1081-1084.

[16] M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, V. J. Sorger. All-optical nonlinear activation function for photonic neural networks [Invited]. Opt. Mater. Express, 2018, 8: 3851-3863.

[17] S. I. Azzam, A. V. Kildishev. Time-domain dynamics of reverse saturable absorbers with application to plasmon-enhanced optical limiters. Nanophotonics, 2018, 8: 145-151.

[18] X. Chen, Y. Chen, Y. Shi, M. Yan, M. Qiu. Photothermal switching of SOI waveguide-based Mach-Zehnder interferometer with integrated plasmonic nanoheater. Plasmonics, 2014, 9: 1197-1205.

[19] X. Chen, Y. Shi, F. Lou, Y. Chen, M. Yan, L. Wosinski, M. Qiu. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber. Opt. Express, 2014, 22: 25233-25241.

[20] H. Gong, X. Chen, Y. Qu, Q. Li, M. Yan, M. Qiu. Photothermal switching based on silicon Mach-Zehnder interferometer integrated with light absorber. IEEE Photonics J., 2016, 8: 7802610.

[21] Z. Shi, L. Gan, T.-H. Xiao, H.-L. Guo, Z.-Y. Li. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photonics, 2015, 2: 1513-1518.

[22] C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, J. Chen. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci. Rep., 2017, 7: 17046.

[23] M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba, M. Notomi. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics, 2020, 14: 37-43.

[24] H. Wang, N. Yang, L. Chang, C. Zhou, S. Li, M. Deng, Z. Li, Q. Liu, C. Zhang, Z. Li, Y. Wang. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photon. Res., 2020, 8: 468-474.

[25] B. Yan, B. Zhang, H. Nie, G. Li, J. Liu, B. Shi, K. Yang, J. He. Bilayer platinum diselenide saturable absorber for 2.0 μm passively Q-switched bulk lasers. Opt. Express, 2018, 26: 31657-31663.

[26] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, A. K. Geim. Fine structure constant defines visual transparency of graphene. Science, 2008, 320: 1308.

[27] K. F. Mak, J. Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10: 216-226.

[28] B. Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics. Chin. Opt. Lett., 2018, 16: 020004.

[29] A. Krasnok, S. Lepeshov, A. Alú. Nanophotonics with 2D transition metal dichalcogenides [Invited]. Opt. Express, 2018, 26: 15972-15994.

[30] Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y.-Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H.-T. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, H.-J. Gao. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett., 2015, 15: 4013-4018.

[31] H.-P. Komsa, A. V. Krasheninnikov. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B, 2013, 88: 085318.

[32] W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, G. Eda. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett., 2013, 13: 5627-5634.

[33] Z. Wang, Q. Li, F. Besenbacher, M. Dong. Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater., 2016, 28: 10224-10229.

[34] H. Huang, S. Zhou, W. Duan. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys. Rev. B, 2016, 94: 121117.

[35] K. Zhang, M. Yan, H. Zhang, H. Huang, M. Arita, Z. Sun, W. Duan, Y. Wu, S. Zhou. Experimental evidence for type-II Dirac semimetal in PtSe2. Phys. Rev. B, 2017, 96: 125102.

[36] H. Yang, M. Schmidt, V. Süss, M. Chan, F. F. Balakirev, R. D. McDonald, S. S. P. Parkin, C. Felser, B. Yan, P. J. W. Moll. Quantum oscillations in the type-II Dirac semi-metal candidate PtSe2. New J. Phys., 2018, 20: 043008.

[37] J. Xie, D. Zhang, X.-Q. Yan, M. Ren, X. Zhao, F. Liu, R. Sun, X. Li, Z. Li, S. Chen. Optical properties of chemical vapor deposition-grown PtSe2 characterized by spectroscopic ellipsometry. 2D Mater., 2019, 6: 035011.

[38] C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, G. S. Duesberg. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano, 2016, 10: 9550-9558.

[39] C. Yim, N. McEvoy, S. Riazimehr, D. S. Schneider, F. Gity, S. Monaghan, P. K. Hurley, M. C. Lemme, G. S. Duesberg. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett., 2018, 18: 1794-1800.

[40] J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, Q. Bao. Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers. ACS Appl. Mater. Interfaces, 2018, 10: 21534-21540.

[41] D. Wu, Y. Wang, L. Zeng, C. Jia, E. Wu, T. Xu, Z. Shi, Y. Tian, X. Li, Y. H. Tsang. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics, 2018, 5: 3820-3827.

[42] L. Zeng, S. Lin, Z. Lou, H. Yuan, H. Long, Y. Li, W. Lu, S. P. Lau, D. Wu, Y. H. Tsang. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550  nm. NPG Asia Mater., 2018, 10: 352-362.

[43] L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, Y. H. Tsang. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Functional Mater., 2018, 28: 1705970.

[44] R. Zhuo, L. Zeng, H. Yuan, D. Wu, Y. Wang, Z. Shi, T. Xu, Y. Tian, X. Li, Y. H. Tsang. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res., 2019, 12: 183-189.

[45] K. Zhang, M. Feng, Y. Ren, F. Liu, X. Chen, J. Yang, X. Yan, F. Song, J. Tian. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber. Photon. Res., 2018, 6: 893-899.

[46] Z. Huang, X. Yu, W. Zhang, P. Yu, D. Wu, W. Zhang, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun., 2018, 9: 1545.

    . Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials, 2016, 9: 716.

[47] Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, Y. Chai. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater., 2017, 29: 1604230.

[48] M. O’Brien, N. McEvoy, C. Motta, J.-Y. Zheng, N. C. Berner, J. Kotakoski, K. Elibol, T. J. Pennycook, J. C. Meyer, C. Yim, M. Abid, T. Hallam, J. F. Donegan, S. Sanvito, G. S. Duesberg. Raman characterization of platinum diselenide thin films. 2D Mater., 2016, 3: 021004.

[50] M. H. Tahersima, Z. Ma, Y. Gui, S. Sun, H. Wang, R. Amin, H. Dalir, R. Chen, M. Miscuglio, V. J. Sorger. Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics. Nanophotonics, 2019, 8: 1559.

[51] L. Xin, W. Luna, G. Shiliang, L. Zhiquan, Y. Ming. Doubled temperature measurement range for a single micro-ring sensor. Acta Phys. Sinica, 2014, 63: 154209.

[52] R. Espinola, M. Tsai, J. T. Yardley, R. Osgood. Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photonics Technol. Lett., 2003, 15: 1366-1368.

[53] Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, H. Zhang. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev., 2019, 13: 1800313.

[54] S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, Y. Ding. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat. Commun., 2017, 8: 14411.

Kangkang Wei, Delong Li, Zhitao Lin, Zhao Cheng, Yuhan Yao, Jia Guo, Yunzheng Wang, Yupeng Zhang, Jianji Dong, Han Zhang, Xinliang Zhang. All-optical PtSe2 silicon photonic modulator with ultra-high stability[J]. Photonics Research, 2020, 8(7): 07001189.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!