半导体光电, 2019, 40 (3): 375, 网络出版: 2019-07-09   

FBG封装材料热膨胀系数对温度传感精度的影响

The Influence of Thermal Expansion Coefficient of FBG Packaging Material on Temperature Sensing Accuracy
作者单位
1 河南大学 物理与电子学院 物理与电子国家级实验教学示范中心, 河南 开封 475001
2 北京邮电大学 电子工程学院, 北京 100876
摘要
光纤光栅温度传感器的增敏封装技术是促进其工程化的关键,其中增敏材料的参数特性决定了传感器的精度。讨论了奥氏体不锈钢304材料的热膨胀系数特性,研究了其热膨胀系数随温度变化的关系,分析了线性热膨胀系数对光纤布拉格光栅(FBG)温度传感公式的影响,提出用二次多项式拟合方法修正开槽钢柱封装的FBG温度系数,并搭建系统进行了实验验证。结果表明:同一温度下,实测的传感器中心波长值与采用固定热膨胀系数下的波长值相差较大,且温度越高二者差值越大,100℃时达0.075nm,温度偏差2.58℃;而实测中心波长值与采用线性热膨胀系数下的中心波长值基本一致,二者的二次多项式拟合优度达0.9999。因此,考虑封装材料的热膨胀系数变化特性,采用二次拟合方法将大大提高传感器的测量精度,适用于对温度传感精度要求较高的场合。
Abstract
The package technology of fiber grating temperature sensor is the key to promote its engineering. In this paper, the characteristics of thermal expansion coefficient of 304 austenitic stainless steel were discussed, the relationship between thermal expansion coefficient and temperature was studied. The influence of linear thermal expansion coefficient on FBG temperature sensing formula was analyzed, a quadratic polynomial fitting method was proposed to modify the FBG temperature coefficient encapsulated in the channel steel column, and the verification system was build. Experimental results show that, under the same temperature, the measured central wavelength of the sensor is greatly different from the wavelength value obtained under the fixed thermal expansion coefficient. The higher the temperature is, the greater the difference is,and it reaches 0.075nm at 100℃ with the temperature deviation of 2.58℃. The measured value is basically consistent with the wavelength value obtained under linear thermal expansion coefficient, and the degree of quadratic polynomial fitting is 0.9999. Therefore, considering the variation characteristics of thermal expansion coefficient of packaging materials, and adopting the quadratic fitting method will greatly improve the measurement accuracy of the sensor, which is suitable for the occasions with high accuracy requirement on temperature measurement.
参考文献

[1] 廖常锐, 何 俊, 王义平. 飞秒激光制备光纤布拉格光栅高温传感器研究[J]. 光学学报, 2018, 38(3): 0328009.Liao Changrui, He Jun, Wang Yiping. Study on high temperature sensors based on fiber Bragg gratings fabricated by femtosecond laser[J]. Acta Opt. Sin., 2018, 38(3): 0328009.

[2] 谢剑锋, 张 华, 郭 平, 等. 封装材料性能对光纤布拉格光栅温度灵敏度影响分析[J]. 光电子·激光, 2008, 19(9): 1158-1162.Xie Jianfeng, Zhang Hua, Guo Ping, et al. Analysis on influence of clad materials on temperature sensitivity of fiber Bragg grating[J]. J. of Optoelectron.·Laser, 2008, 19(9): 1158-1162.

[3] 王 鹏, 赵 洪, 刘 杰, 等. 光纤光栅无应力毛细铜管封装及温度特性试验[J]. 光电子·激光, 2012, 23(3): 28-32.Wang Peng, Zhao Hong, Liu Jie, et al. Experimental study on temperature sensing characteristics of fiber Bragg grating packaged by copper capillary without strain[J]. J. of Optoelectron.·Laser, 2012, 23(3): 28-32.

[4] 王楚虹. 基片式光纤光栅应变传感器金属化封装的关键技术[D]. 重庆: 重庆大学, 2017.Wang Chuhong. Key technology of metallic package for surface-mounted fiber Bragg grating strain sensors[D]. Chongqing: Chongqing University, 2017.

[5] 张燕军, 王海宝, 陈则贵, 等. 光纤光栅毛细钢管封装工艺及其传感特性研究[J]. 激光与红外, 2009, 39(1): 53-55.Zhang Yanjun, Wang Haibao, Chen Zegui, et al. Study on FBG sensors steel capillary encapsulating technique and sensing properties[J]. Laser and Infrared, 2009, 39(1): 53-55.

[6] 姜劭栋, 张发祥, 李淑娟, 等. 光纤光栅应变传感系统在船舶结构监测中的应用[J]. 半导体光电, 2017, 38(2): 268-270.Jiang Shaodong, Zhang Faxiang, Li Shujuan, et al. Application of FBG strain sensing system in ship structure monitoring[J]. Semiconductor Optoelectronics, 2017, 38(2): 268-270.

[7] 张伟刚, 张严昕, 耿鹏程, 等. 新型长周期光纤光栅的设计与研制进展[J]. 物理学报, 2017, 66(7): 28-47.Zhang Weigang, Zhang Yanxin, Geng Pengcheng, et al. Recent progress in design and fabrication of novel long-period fiber grating[J]. Acta Phys. Sin., 2017, 66(7): 28-47.

[8] 冯 艳, 张 华, 李玉龙. 智能金属结构中FBG传感器的埋入实验[J]. 压电与声光, 2009, 31(3): 334-336.Feng Yan, Zhang Hua, Li Yulong. Experiment on embedding FBG sensor into intelligent metal structures[J]. Piezoelectrics and Acoustooptics, 2009, 31(3): 334-336.

[9] 甘 望, 王华强, 谢 忱, 等. 光纤光栅管式封装工艺研究[J]. 光学仪器, 2016, 38(6): 544-549.Gan Wang, Wang Huaqiang, Xie Chen, et al. Steel capillary packaging technique for fiber Bragg grating sensor[J]. Optical Instruments, 2016, 38(6): 544-549.

[10] 彭雄辉, 黄安贻, 左浩然. 基片式高灵敏度光纤光栅温度传感器[J]. 中国测试, 2017, 43(7): 134-138.Peng Xionghui, Huang Anyi, Zuo Haoran. Substrate type high-sensitivity fiber grating temperature sensor[J]. China Measurement, 2017, 43(7): 134-138.

[11] 姜明月. FBG温度增敏传感器及其监测系统软件设计[D]. 山东: 山东大学, 2017.Jiang Mingyue. Design of FBG temperature sensitive sensor and the software of its monitoring system[D]. Shandong: Shandong University, 2017.

[12] 郭永兴, 匡 毅, 熊 丽, 等. 不同封装方式的光纤光栅传感与温补特性[J]. 激光与光电子学进展, 2018, 55(11): 110601.Guo Yongxing, Kuang Yi, Xiong Li, et al. Sensing and temperature-compensation characteristics of fiber Bragg gratings under different packaging ways[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110601.

[13] 薛泽利, 朱雪彤, 刘少华. 钢管套装光纤Bragg光栅温度传感器[J]. 光学技术, 2016, 42(1): 75-77.Xue Zeli, Zhu Xuetong, Liu Shaohua. Fiber Bragg grating temperature sensor with double steel pipe suits[J]. Optical Technique, 2016, 42(1): 75-77.

[14] 廖帮全, 赵启大, 冯德军, 等. 光纤耦合模理论及其在光纤布拉格光栅上的应用[J]. 光学学报, 2002, 22(11): 1340-1344.Liao Bangquan, Zhao Qida, Feng Dejun, et al. Coupled-mode theory for optical fiber and its application to fiber Bragg gratings[J]. Acta Opt. Sin., 2002, 22(11): 1340-1344.

韩笑笑, 员琳, 樊琳琳, 张峰, 辛明, 杨濠琨, 张锦龙. FBG封装材料热膨胀系数对温度传感精度的影响[J]. 半导体光电, 2019, 40(3): 375. HAN Xiaoxiao, YUAN Lin, FAN Linlin, ZHANG Feng, XIN Ming, YANG Haokun, ZHANG Jinlong. The Influence of Thermal Expansion Coefficient of FBG Packaging Material on Temperature Sensing Accuracy[J]. Semiconductor Optoelectronics, 2019, 40(3): 375.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!