黄安 1,2赵延辉 3杨顺华 3夏晖晖 1[ ... ]阚瑞峰 1,**
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所,安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院,安徽 合肥 230026
3 中国空气动力研究与发展中心超高速空气动力研究所,四川 绵阳 621000
为提高超燃冲压发动机扩张段温度测量精度和测量结果的稳定性,笔者基于可调谐半导体吸收光谱技术(TDLAS),选取5个低态能级不同且分布均匀的近红外H2O吸收线,采用玻尔兹曼图法测温。采用集成的五波长测量系统,在实验室高温炉上设定1000~1600 K的温度台阶,选用不同波长数目组合计算分析,五波长的温度偏差均在1%之内,优于其他数目的波长组合。在发动机实验中,测量了超燃冲压发动机扩张段横截面16路线的平均温度,实现了发动机点火、燃烧和熄火宽温度范围的监测;对比了相同工况下的两次实验,结果显示,工况A和工况B下重复实验的平均偏差分别为17 K和7 K,重复性较好,体现该测量方法在发动机测量中的稳定性。该温度测量方法可广泛应用于发动机及工业过程的燃烧流场领域,为计算燃烧效率、改进燃烧过程提供数据支撑,具有重要的工程应用价值。
光谱学 可调谐半导体吸收光谱技术 玻尔兹曼图 温度测量 
中国激光
2023, 50(19): 1911004
艾苏曼 1,2邓昊 2黄安 2夏晖晖 2[ ... ]许振宇 2,***
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室,安徽 合肥 230031
针对宽波段吸光度直接反演温度的测温方法,数值仿真分析了300~2000 K温度范围内光谱噪声独立作用、光谱参数误差独立作用和二者综合作用对温度反演精度的影响。在光谱噪声单独作用下,以±0.005幅值噪声为一倍噪声,添加幅值从±0.005增加至±0.1的光谱噪声。当噪声幅值为±0.1时,温度的最大标准差为46.58 K@1700 K,为达到小于10 K的标准差,需将光谱噪声幅值控制在±0.02以内。在光谱参数误差单独作用下,分别对可标定的强吸收线和不可标定的弱吸收线的光谱参数添加1%和10%~50%的误差,温度最大标准差为7.77 K@1300 K(1%和40%的误差组合),其中线强误差对温度反演的影响较大,故应尽量将线强标定误差控制在1%以内。在光谱噪声和光谱参数误差的综合作用下,光谱噪声对测温精度的影响更大,在实际测量过程中获得信噪比较好的吸收信号可减小光谱噪声带来的影响。
光谱学 吸收光谱 宽波段吸收光谱 温度测量 光谱噪声 光谱参数误差 
光学学报
2022, 42(18): 1830003
作者单位
摘要
1 中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
可调半导体激光光谱技术(TDLAS)可实现温度、 组分浓度等多参数同时测量, 具有体积小、 响应速度快、 环境适应性高等优点, 逐渐成为燃烧流场诊断的主要手段之一。 TDLAS光谱测量常采用直接吸收技术和波长调制技术, 其中强度归一化的波长调制技术, 适合存在振动、 湍流等致光束偏转效应和强辐射本底等恶劣应用环境条件的燃气轮机流场参数测量。 基于TDLAS技术, 开展了1f归一化波长调制技术燃气轮机燃烧室温度、 组分浓度参数测量方法研究和实验室验证工作, 并在某燃气轮机单喷嘴台架进行了冷态、 热态试验验证, 实现了燃气轮机燃烧室沿气流方向温度及H2O、 CH4浓度二维分布测量。 采用1f归一化波长调制技术抑制台架振动、 热辐射背景噪声, 采用1 392, 1 469和1 343 nm蝶形封装的DFB激光器, 三支激光器的出光方式为时分复用, 选取H2O的7 185.6, 6 807.83和7 444.3 cm-1处的吸收线, 两两组合使用, 测量热态下一定范围内的温度和H2O浓度; 采用1 654 nm蝶形封装的DFB激光器, 选取CH4的6 046.96 cm-1处的吸收线进行冷态CH4浓度测量。 实验室对测量系统可靠性进行验证, 配置4%~6%范围内的CH4气体进行测量并与实际值对比, 浓度测量最大相对偏差为3.72%; 在高温炉中设定900~1 500 K范围内的温度台阶, 充入纯水汽, 计算不同设定温度和压力下的温度和浓度测量值, 温度测量最大相对偏差3.07%, 浓度测量最大相对偏差为-2.00%, 验证了该测量系统的可靠性。 台架燃气轮机实验中, 集成了一套小型化测量仪器, 设计多束激光收发一体的测量结构。 实验采用两个电动位移台, 搭载测量结构, 每间隔5 mm逐点移动采样, 对燃气轮机燃烧室300 mm×60 mm的燃烧区域进行测量, 获取了若干工况下冷热态结果。 通过双三次插值的方法绘制分辨率为0.5 mm的二维流场分布图, 结果分别反映了测量区域范围内CH4和火焰分布的真实状态。 为燃气轮机喷嘴燃料、 空气掺混情况和燃烧特性研究提供了新的研究方法和技术手段。
燃气轮机 波长调制 流场诊断 移动测量 TDLAS TDLAS Gas turbine Wavelength modulation spectroscopy Flow field diagnosis Mobile measurement 
光谱学与光谱分析
2021, 41(4): 1144
臧益鹏 1,2许振宇 1夏晖晖 1黄安 1,2[ ... ]阚瑞峰 3,*
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学科学岛分院, 安徽 合肥 230026
3 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
在吸收光谱燃烧流场诊断中,吸收分子谱线参数的准确性直接影响流场参数测量的精度。对燃烧诊断研究中主要探针水汽(H2O)分子的吸收谱线参数进行高精度校准。实验利用波长为1469 nm的近红外半导体激光器作为光源,采用高灵敏的免标定波长调制技术,结合自行搭建的实验室高温测量系统,获得了900~1500 K 温度范围内所选谱线的调制吸收光谱。利用非线性最小二乘L-M拟合算法对H2O吸收光谱进行拟合,精确获得了所选谱线在6807.83 cm -1和6808.04 cm -1的线强、自展宽系数和温度依赖系数;通过对比HITRAN和HITEMP数据库相应的光谱参数,可得线强的相对偏差分别为3.91%与-5.40%,自展宽系数的相对偏差分别为3.01%与-6.49%,温度依赖系数分别为0.5213与0.4567,线强的实验结果不确定度分别为1.05%与1.96%。所提出的免标定波长调制光谱参数标定法在高温光谱测量中具有检测灵敏度高、光谱信噪比高等优点,有利于提高光谱参数校准的精度,将为燃烧流场参数的精确反演提供谱线基础。
光谱学 可调谐半导体激光吸收光谱技术 波长调制 高温 谱线参数 
中国激光
2020, 47(10): 1011001
作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
在流场诊断技术中, 可调谐半导体吸收光谱技术(TDLAS)成为主要的诊断技术之一, 其可实现非接触、 原位检测。 波长调制(WMS)和直接吸收(DA)是两种最常用的TDLAS气体传感方法, 在目标含量很低或者极端流场环境下, 波长调制技术呈现出更多的优势, 检测灵敏度与直接吸收相比可以提高1~2个数量级。 在近红外波长调制技术应用领域, 分布反馈式(DFB)半导体激光器成为流场诊断技术的光源选择之一, 无论利用谐波信号(或者归一化谐波信号)的线型拟合, 还是选择谐波信号的峰值来反演流场参数, 吸收模型的准确建立均十分重要。 在模型建立时, 激光器频率-时间响应以及光强-时间响应的准确表示尤为重要。 为解决吸收模型准确建立问题, 提出了一种准确测量激光器调制参数的完整方法, 通过实验测量了用于探测水汽吸收的1 392和1 469 nm激光器的调制特性, 研究了分布反馈式激光器的调制参数随调制幅度, 调制频率以及工作温度的变化。 根据该方法得到的调制参数, 建立吸收模型, 测得常温下空气中水汽浓度为197%, 直接吸收方法测得浓度为199%, 验证了该测量方法的准确性。 研究表明, 调制深度随调制幅度的增加线性增加, 随调制频率的增加非线性单调减小, 随工作温度的升高线性增加; 激光器的出光强度和频率同时被调制, 强度变化超前频率变化的相位, 随调制幅度的变化不明显, 随调制频率的增加单调增加, 随工作温度的升高单调减小; 归一化一次谐波振幅和二次振幅均随调制幅度的增加而增加, 随调制频率的增加而减小, 随工作温度的变化不明显。 在吸收光谱应用领域, 波长调制技术发挥的作用愈加重要, 调制系数与谐波信号的峰值息息相关, 在波长调制技术应用时, 选取适当的调制参数, 有利于得到合适的谐波信号, 可通过改变调制幅度、 调制频率、 工作温度得到最优调制系数。 研究了近红外分布反馈式半导体激光器的调制特性, 该方法同样适用于不同封装和不同波段激光器调制特性的研究, 利于推广吸收光谱技术在各领域的应用。
波长调制 调制深度 调制幅度 吸收模型 TDLAS TDLAS Wavelength modulation Modulation depth Modulation amplitude DFB DFB Absorption model 
光谱学与光谱分析
2019, 39(9): 2702
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
燃烧场温度的测量对于燃烧诊断具有重要意义。开展了基于可调谐半导体激光吸收光谱 (Tunable diode laser absorption spectroscopy, TDLAS)的在 线测温方法研究,基于双光束分时扫描技术,实现了双激光器协同工作与燃烧产物水汽 7154.35 cm-1 和7467.77 cm-1两条吸收谱线的同时测量,并利用双线积分吸光度比值关系完成温度的精确反演, 满足燃烧场温度在线检测应用需要。开展了针对甲烷/空气预混平焰炉火焰温度的实时检测实验研究, 并与热电偶进行了测温对比分析,两种方法的测量具有较好的一致性,相对误差小于3.8%,验证 了TDLAS技术对燃烧场温度非侵入式快速测量的可行性和可靠性。
可调谐半导体激光吸收光谱 水汽 温度 平焰炉 吸光度 tunable diode laser absorption spectroscopy water vapor temperature flat flame furnace absorbance 
大气与环境光学学报
2019, 14(3): 228
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
基于可调谐半导体吸收光谱的波长调制技术,建立了精确的吸收模型。通过两条已知吸收中心的吸收谱线,对标准具自由光谱范围进行标定,并利用更贴近激光器出光特性的描述模型,得到激光器频率-时间响应,结合实验室标定和HITEMP数据库的杂合吸收谱线参数,建立了可与实际吸收直接比较的精确模型,以诊断燃烧流场。本研究以H2O为目标分子,选取吸收中心为7185.60 cm -1和6807.83 cm -1两条吸收线,利用扣除背景的归一化二次谐波信号峰值反演流场温度,并在管式高温炉上进行实验验证,最高测量温度为1500 K,相对误差小于3.1%。吸收模型的准确性决定了所测流场参数的准确性,该模型可应用到更为复杂的燃烧流场环境,实现流场参数的精确测量。
光谱学 吸收模型 波长调制 燃烧流场 谐波信号 
中国激光
2019, 46(7): 0711001
作者单位
摘要
中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
可调谐激光吸收光谱(TDLAS)技术作为一种先进的光谱检测手段已经被广泛应用于燃烧流场和风洞环境的过程诊断中, 它可以实现流场温度、组分浓度、气流速度等多参数的在线精确测量。介绍了TDLAS技术的基本原理及其在流场参数测量领域的发展历程, 总结了近几年来在超燃冲压发动机、航空涡轮发动机以及超声速风洞等流场参数测量方面所开展的TDLAS应用实例, 着重介绍了在实验室和外场环境中就流速的高精度测量、燃烧场温度和组分的连续监测、场分布的准确反演所做的研究工作。同时概述了激光吸收光谱流场诊断技术的发展水平、目前已经取得的最新研究进展以及还存在的相关问题, 最后展望了TDLAS技术在流场诊断领域的应用前景和未来的发展趋势。
吸收光谱 流场诊断 流速 温度 浓度 场分布 
中国激光
2018, 45(9): 0911005
作者单位
摘要
1 中国科学院合肥物质科学研究院/安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学科学岛分院, 安徽 合肥 230026
燃烧场组分的测量对于燃烧诊断具有重要的研究意义。基于可调谐激光吸收光谱(TLAS)技术, 采用中红外带间级联激光器(ICL)扫描一氧化碳(CO)的2060 cm-1(v=1←0,P20)吸收谱线, 实现了对燃烧场CO浓度的测量。实验通过燃烧产物H2O的7154.35 cm-1和7467.77 cm-1吸收谱线的谱线强度比值反演燃烧场温度, 以此修正测量环境下CO谱线强度参数, 实现CO浓度的精确测量。首先介绍了TLAS测温验证实验, 温度测量在各个设置温度台阶下的波动均小于45 K, 温度测量具有可靠性; 其次开展CO浓度测量标定实验, CO测量浓度与标准气体浓度的误差在3%以内; 最后针对甲烷/空气平焰炉在不同燃烧状态下进行CO浓度测量, 实现0.35‰~4.5%范围内CO浓度的测量, 检测灵敏度为0.035‰。实验验证了中红外吸收光谱技术实现燃烧场组分浓度测量的可行性和可靠性, 有助于燃烧诊断的研究, 具有较大的应用价值。
光谱学 吸收光谱 一氧化碳 中红外 温度 吸光度 
中国激光
2018, 45(9): 0911010
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
2 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
可视化的二维温度场分布反演软件对温度场重建分布起到了重要的作用。基于可调谐二极管激光吸收光谱(tunable diode laser absorption spectroscopy, TDLAS)技 术,结合代数迭代算法(algebraic reconstruction technique, ART)和Python设计语言,在读取两组积分吸光度的基础上,设计了二维温度场分布的可视化软件。 结合激光吸收光谱技术和计算机断层扫描方法,封装了二维温度场重建的算法。在此基础上,添加可视化的操作界面,实现二维温度场重建的原 始分布和插值后的分布。针对高斯分布的重建,与原始分布进行比较,结果显示,中心区域温度值较高,边缘较小。结果表明, ART算法和TDLAS技术的结合能够 很好地实现二维温度场的反演,克服了TDLAS视线测量的缺陷。
代数迭代算法 二维重建温度场 TDLAS tunable diode laser absorption spectroscopy algebraic reconstruction technique 2D temperature filed reconstruction Python Python 
大气与环境光学学报
2017, 12(5): 393

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!