作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
在流场诊断技术中, 可调谐半导体吸收光谱技术(TDLAS)成为主要的诊断技术之一, 其可实现非接触、 原位检测。 波长调制(WMS)和直接吸收(DA)是两种最常用的TDLAS气体传感方法, 在目标含量很低或者极端流场环境下, 波长调制技术呈现出更多的优势, 检测灵敏度与直接吸收相比可以提高1~2个数量级。 在近红外波长调制技术应用领域, 分布反馈式(DFB)半导体激光器成为流场诊断技术的光源选择之一, 无论利用谐波信号(或者归一化谐波信号)的线型拟合, 还是选择谐波信号的峰值来反演流场参数, 吸收模型的准确建立均十分重要。 在模型建立时, 激光器频率-时间响应以及光强-时间响应的准确表示尤为重要。 为解决吸收模型准确建立问题, 提出了一种准确测量激光器调制参数的完整方法, 通过实验测量了用于探测水汽吸收的1 392和1 469 nm激光器的调制特性, 研究了分布反馈式激光器的调制参数随调制幅度, 调制频率以及工作温度的变化。 根据该方法得到的调制参数, 建立吸收模型, 测得常温下空气中水汽浓度为197%, 直接吸收方法测得浓度为199%, 验证了该测量方法的准确性。 研究表明, 调制深度随调制幅度的增加线性增加, 随调制频率的增加非线性单调减小, 随工作温度的升高线性增加; 激光器的出光强度和频率同时被调制, 强度变化超前频率变化的相位, 随调制幅度的变化不明显, 随调制频率的增加单调增加, 随工作温度的升高单调减小; 归一化一次谐波振幅和二次振幅均随调制幅度的增加而增加, 随调制频率的增加而减小, 随工作温度的变化不明显。 在吸收光谱应用领域, 波长调制技术发挥的作用愈加重要, 调制系数与谐波信号的峰值息息相关, 在波长调制技术应用时, 选取适当的调制参数, 有利于得到合适的谐波信号, 可通过改变调制幅度、 调制频率、 工作温度得到最优调制系数。 研究了近红外分布反馈式半导体激光器的调制特性, 该方法同样适用于不同封装和不同波段激光器调制特性的研究, 利于推广吸收光谱技术在各领域的应用。
波长调制 调制深度 调制幅度 吸收模型 TDLAS TDLAS Wavelength modulation Modulation depth Modulation amplitude DFB DFB Absorption model 
光谱学与光谱分析
2019, 39(9): 2702
作者单位
摘要
中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
可调谐激光吸收光谱(TDLAS)技术作为一种先进的光谱检测手段已经被广泛应用于燃烧流场和风洞环境的过程诊断中, 它可以实现流场温度、组分浓度、气流速度等多参数的在线精确测量。介绍了TDLAS技术的基本原理及其在流场参数测量领域的发展历程, 总结了近几年来在超燃冲压发动机、航空涡轮发动机以及超声速风洞等流场参数测量方面所开展的TDLAS应用实例, 着重介绍了在实验室和外场环境中就流速的高精度测量、燃烧场温度和组分的连续监测、场分布的准确反演所做的研究工作。同时概述了激光吸收光谱流场诊断技术的发展水平、目前已经取得的最新研究进展以及还存在的相关问题, 最后展望了TDLAS技术在流场诊断领域的应用前景和未来的发展趋势。
吸收光谱 流场诊断 流速 温度 浓度 场分布 
中国激光
2018, 45(9): 0911005
陈祥 1,2阚瑞峰 1,*杨晨光 1胡迈 1[ ... ]刘建国 1
作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230022
基于中红外量子级联激光器(QCL)以及频分复用波长调制光谱技术,实现了NO2及NH3的高精度同时测量。对中心频率在1600.0 cm -1及1103.4 cm -1附近的两支QCL施加不同频率的正弦调制,利用数字锁相技术得到了测量信号在不同解调频率上的二次谐波信号。搭建了一套基于该技术的开放式空气中NO2及NH3的测量系统,多次反射池的光程为60 m。利用25 cm长的参考池进行浓度标定,发现系统在较大的浓度范围内具有优良的线性响应。两种气体的检测限均小于10 -9量级。使用系统进行了24 h的气体监测,测量结果与参考仪器的结果吻合较好。
测量 环境光学 中红外吸收光谱 频分复用波长调制 量子级联激光器 
光学学报
2018, 38(5): 0512004
袁峰 1何亚柏 1,2姚路 2陈祥 1,2[ ... ]阚瑞峰 2
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230031
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
介绍了波长调制光谱技术的检测原理,分析了传统的基于现场可编程门阵列(FPGA)的波长调制解调算法的优缺点,进而提出了一种基于坐标旋转数字计算机(CORDIC)原理的FPGA波长调制解调算法。介绍了该算法的原理和基于FPGA的实现过程,总结其相对于传统算法在精度、资源占用、耗时等方面的优势。最后给出该算法的综合和仿真结果,通过和理论对比验证了该算法的准确性,并且比较了两种算法的计算精度和综合后的资源占用情况。
光谱学 数字锁相放大器 二次谐波 坐标旋转数字计算机 现场可编程门阵列 
激光与光电子学进展
2017, 54(7): 073002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!