作者单位
摘要
北京应用物理与计算数学研究所,北京 100088
利用自行开发的二维辐射磁流体力学程序,模拟研究在软泡沫柱外嵌套硬泡沫层、中心嵌套结构靶丸的动态黑腔整体动力学行为和热力学性能,以发现硬泡沫层对动态黑腔辐射场的影响和调制作用,以及腔靶耦合相互作用规律。对峰值50 MA、全上升时间300 ns的驱动电流,模拟结果的比较分析表明,嵌套硬泡沫层后靶丸感受到的辐射场温度开始升高时刻延后,辐射均匀更迅速,辐射温度第一峰下降,变化更顺滑,黑腔存在时间变长,达到10 ns以上,后期辐射温度大于350 eV,波形与美国靶丸点火成功实验中的黑腔辐射温度变化曲线比较接近;与没有靶丸的动态黑腔的相同区域辐射温度相比较,嵌入靶丸后,靶丸在烧蚀后期感受到的辐射驱动温度增加。故嵌套硬泡沫层和腔靶耦合都有益于聚变靶丸的烧蚀内爆。
Z箍缩 动态黑腔 辐射场调制 惯性约束聚变 靶丸 Z-pinch dynamic hohlraum radiation field modulation inertial confinement fusion capsule 
强激光与粒子束
2023, 35(8): 082004
薛创 1,2,*丁宁 1肖德龙 1张扬 1[ ... ]束小建 1
作者单位
摘要
1 北京应用物理与计算数学研究所, 北京 100088
2 中国工程物理研究院 研究生院, 北京 100088
为方便描述聚龙一号装置与Z箍缩负载的电磁耦合过程, 基于大量电参数实验数据和全电路模拟分析, 建立了一个简化的集总电路模型, 获得了等效电压波形和等效电阻、电感等集**量。采用水介质三板输出线出口位置的开路电压作为等效电压, 进一步拟合为正弦平方函数, 峰值为3.3 MV(当前驱动器充压为65 kV), 零到峰值的时间长度为102.5 ns。采用简化的流阻抗模型描述磁绝缘传输线内部空间电子流的电流损失效应。将电路程序与零维负载动力学程序耦合模拟, 得到了与实验结果符合的负载电流波形, 尤其电流波形的前沿和峰值符合较好, 分析了电磁能转化为负载动能的过程。
聚龙一号 Z箍缩 电路模拟 集**量 PTS Z pinch circuit simulation lumped parameters 
强激光与粒子束
2016, 28(12): 125004
薛创 1,2,*丁宁 1张扬 1肖德龙 1[ ... ]束小建 1
作者单位
摘要
1 北京应用物理与计算数学研究所, 北京 100088
2 中国工程物理研究院 研究生院, 北京 100088
为研究聚龙一号驱动器内部电磁脉冲的形成与传输规律,优化调节其运行状态,获得满足负载设计需求的电流波形,建立了描述驱动器各关键部件充放电过程的全电路数值模拟程序。该程序与负载动力学程序耦合模拟,能够在一定范围内得到与实验结果符合较好的电压和电流波形。在典型的丝阵Z箍缩实验条件下,模拟分析了各段水介质传输线上电磁脉冲宽度逐级压缩,功率逐级放大的过程,驱动器充压65 kV时,大约1 MJ的电磁能量传输到绝缘堆位置。在典型的磁驱动准等熵压缩实验条件下,模拟分析了激光触发气体开关对驱动器24路模块分时放电的控制过程,模拟的0121发实验负载区电流上升时间(0~100%)为450 ns、峰值约6 MA。
聚龙一号 脉冲形成与传输 脉冲功率 Z箍缩 等熵压缩 电路模拟 PTS pulse forming and transmission pulsed power Z pinch isentropic compression circuit simulation 
强激光与粒子束
2016, 28(1): 015014
作者单位
摘要
北京应用物理与计算数学研究所, 北京 100088
将负载区域的电流(丝阵电流、阴极板电流、阳极板电流和回流柱电流)离散成电流线或电流面等电流微元,根据毕奥萨伐尔定律,计算所有电流微元在指定场点的磁场,再通过叠加给出该点的总磁场。研究结果发现:在丝阵外围区域,仅由丝阵电流所产生的磁场偏离无限长直导线磁场公式的值,但全部电流所产生的总磁场与公式给出的值很接近。同时,研究了不同负载结构参数下的磁场分布,结果表明:增加丝根数有助于减小单根丝表面的局部磁场,改善丝阵外围磁场分布的均匀性。
Z箍缩 丝阵 电流线 电流面密度 磁场分布 Zpinch wire array current line surface current density magnetic field configuration 
强激光与粒子束
2011, 23(9): 2391
作者单位
摘要
北京应用物理与计算数学研究所,北京 100094
利用基于细致组态非平衡电离模型和非平衡辐射输运的辐射磁流体力学理论,用数值模拟的方法研究了铝丝阵Z箍缩的内爆过程和辐射特性,获得到了合理的内爆动力学图像和与实验结果基本符合的X光辐射功率和总能量等辐射参数,并研究了铝丝阵Z箍缩过程中产生的辐射能谱结构。结果表明:铝丝阵Z箍缩内爆X光辐射是非平衡的,除了存在可以用普朗克能谱近似描述的低能辐射外,还存在大量的K壳层高能辐射。讨论了各种辐射机制对总辐射的贡献,分别计算了线辐射、复合辐射和轫致辐射在各个光子能量范围内所占的份额,讨论了利用高能段连续辐射能谱诊断电子温度的方法,由能谱反推的电子温度,需要进行修正才能反映辐射吸收的影响。
铝丝阵Z箍缩内爆 细致组态 非平衡辐射 逃逸概率近似 高能连续谱 aluminum wire array Z-pinch implosion detailed configurations non-equilibrium radiation escape probability approximation high energy continuum 
强激光与粒子束
2010, 22(2): 341
作者单位
摘要
北京应用物理与计算数学研究所,北京,100088
研制可靠的数值模拟工具对Z箍缩内爆产生X光辐射过程进行理论研究、实验分析以及负载设计至关重要.介绍了2维三温辐射磁流体力学程序(MARED)的物理方案,给出了MARED程序的1维检验结果,验证表明MARED程序适用不同装置条件、不同负载参数.结合丝阵Z箍缩实验的数值模拟和分析表明:相同负载质量条件下,钨丝阵内爆产生的X光辐射功率远大于铝丝阵产生的X光功率;相同负载电流条件下,负载质量越大,计算得到X光功率越低;X光功率随着负载电流增加而增加.
Z箍缩 内爆等离子体 丝阵负载 MARED程序 数值模拟 X光辐射 
强激光与粒子束
2008, 20(2): 212
作者单位
摘要
中国工程物理研究院,四川,绵阳,621900
通过理论和实验研究了快Z箍缩电磁内爆动力学物理过程及其辐射特性,完成了1维和2维辐射磁流体动力学数值模拟程序.利用阳加速器、强光一号脉冲功率装置、S-300装置和Angara-5-1装置,开展了实验研究,发展了一系列观察Z箍缩等离子体辐射的诊断系统.研制了单层、双层钨丝阵及单层丝阵加聚氘乙烯芯等负载.重点研究了能量耦合和内爆动力学规律.
快Z箍缩内爆 能量耦合 高能密度物理 惯性约束聚变 
强激光与粒子束
2006, 18(9): 1475
作者单位
摘要
北京应用物理与计算数学研究所,北京,100088
实验证实双层金属丝阵负载Z箍缩内爆等离子体产生的X光辐射源,与单层丝阵负载相比可以提高40%的功率.为了优化Z装置上双层丝阵负载实验方案的设计,从内爆动力学过程和Rayleigh-Taylor(RT)不稳定性发展过程进行了理论分析.分析表明:双层丝阵负载实验不会提高X光辐射的总能量,但可以明显地提高辐射功率;双层丝阵的外半径应与单层丝阵负载优化方案的半径相一致;双层丝阵内、外层质量的选取应以优化的单层丝阵内爆到心时间为标准;内层丝阵置于外层丝阵半径的正中位置上,更有利于抑制RT不稳定性.
Z箍缩 双层丝阵负载 RT不稳定性 Z-pinch Nested-wire array Rayleigh-Taylor instability 
强激光与粒子束
2005, 17(10): 1533
作者单位
摘要
北京应用物理与计算数学研究所,北京,100088
以俄罗斯S-300 Z-pinch装置的负载电流波形为基准,利用Z箍缩的质点模型对钨丝阵负载的初始半径和线质量进行了系统的优化计算,得到了不同电流幅值的电流波形所对应的优化丝阵负载参数.发现了负载最大内爆动能与负载电流幅值的平方成正比关系.电流上升时间对最优丝阵负载参数的影响的计算表明,随着负载电流上升时间的增大,负载的最优线质量也要增大.
Z-箍缩 丝阵负载优化 质点模型 丝的间隙 Z-pinch Optimal design of wire-array load 0-D model Inter-wire gap 
强激光与粒子束
2003, 15(12): 1200
作者单位
摘要
北京应用物理与计算数学研究所,北京,100088
在拉格朗日坐标系下,建立了描述Z箍缩等离子体内爆动力学过程的一维三温辐射磁流体力学方程组,并编制了相应的拉氏程序.利用该程序对美国Sandia实验室Saturn装置上的铝丝阵列内爆实验进行了数值模拟,得到了内爆等离子体各参量的时空分布.其中内爆到心时刻、X光峰值功率、X光总能量等计算结果与实验结果基本一致.表明所建立的物理模型和编制的程序是合理和可靠的.
Z箍缩 辐射磁流体动力学 内爆等离子体 Zpinch radiation magnetohydrodynamics imploding plasma 
强激光与粒子束
2002, 14(6): 877

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!