作者单位
摘要
1 中国科学院半导体研究所 集成光电子国家重点实验室,北京 100083
2 河南仕佳光子科技股份有限公司 河南省光电芯片与集成重点实验室,鹤壁 458030
3 无锡芯光互连技术研究院有限公司,无锡 214000
推导了布拉格光栅三维耦合系数公式,构建了一种新型的波导型布拉格光栅三维数值模型,并基于此设计制备出一种基于SiO2平面波导结构的低耦合系数、窄线宽、高阶布拉格光栅。从理论设计和试验验证两方面系统分析了布拉格光栅刻蚀深度及占空比对光栅耦合系数和线宽的影响,并最终设计制备出了中心波长为1 554.053 nm,反射率为-8.5 dB,峰值半高宽为89 pm的SiO2波导结构布拉格光栅器件。本文设计制备的低耦合系数高阶布拉格光栅器件工艺简单,成本低,在滤波器、传感器及外腔窄线宽激光器领域中有广阔的应用前景。
平面光波导 二氧化硅 低耦合系数 高阶光栅 峰值半高宽 布拉格光栅 Planar lightwave circuit SiO2 Low coupling coefficient High-order grating Full width at half maximum Bragg grating 
光子学报
2023, 52(4): 0405001
作者单位
摘要
1 科技部高技术中心材料处, 北京 100044
2 中国科学院半导体研究所 集成光电子学国家重点联合实验室, 北京 100083
3 中国科学院大学 材料科学与光电技术学院, 北京 100049
4 中国科学院大学 材料与光电研究中心, 北京 100049
二氧化硅平面光波导(PLC)器件以其低损耗、高工艺容差, 以及与CMOS工艺兼容和与单模光纤模场匹配良好等优点, 在光通信、光互连和集成光学中得到了广泛的应用。文章综述了二氧化硅平面光波导器件及其应用的进展, 重点针对分束器、阵列波导光栅、可调光衰减器及其集成器件的最新研究进行了介绍, 对未来发展趋势进行了展望。
有源光子集成波导器件 无源光子集成波导器件 集成光学 光通信系统 active photonic integrated waveguide devices passive photonic integrated waveguide devices integrated optics optical communication system 
半导体光电
2021, 42(2): 151
作者单位
摘要
1 郑州大学 物理学院,郑州45000
2 中国科学院半导体研究所 集成光电子国家重点实验室, 北京100083
3 河南仕佳光子科技股份有限公司 河南省光电芯片与集成重点实验室,河南鹤壁45800
采用Y型分支与深刻蚀布拉格波导光栅相集成的方案,制备了带有通道监控功能的1×8光分路器集成芯片。耦合封装后的集成光芯片同时实现了稳定的通道光信号传输与监控功能。集成光芯片8通道反射谱中心波长范围为1 597 nm~1 639 nm,间隔为6 nm,3 dB带宽最大为0.67 nm,通道反射率最低为88.24%。1 550 nm波长下测试8通道的平均插损为11.92 dB,输出均匀性为0.19 dB。本文设计并制备的集成光芯片结构简单、集成化高,可以应用于光纤到户建设及其他光网络传输中,实现网络链路状态的实时监控。
集成光芯片 Y型分支波导 布拉格波导光栅 光分路器 光纤到户 Integrated optical chip Y-branch waveguide Bragg waveguide grating Optical splitter Fiber to the home 
光子学报
2021, 50(5): 53
颜跃武 1,2,*安俊明 1,2张家顺 1王亮亮 1[ ... ]王玥 1
作者单位
摘要
1 中国科学院半导体研究所 集成光电子学国家重点联合实验室, 北京 100083
2 中国科学院大学 材料科学与光电技术学院, 北京 100083
设计并制作了硅基二氧化硅波导阵列相控芯片, 该芯片由分束单元、相位调制单元、输出波导阵列三部分构成, 分束单元采用三级1×2的光分束器级联而成, 相位调制单元采用热光调制方式, 输出部分包含8根密集阵列波导.8根波导输出的光在远场发生干涉, 形成扫描光束, 加电后通过二氧化硅热光效应, 折射率变化0.027%(0.000 4)时, 扫描光束偏转5.5°.该波导相控阵列采用2.0%超高折射率差的硅基二氧化硅波导为材料, 经等离子体增强化学气相沉积法进行材料生长及退火, 再经电感耦合等离子体干法刻蚀技术进行刻蚀, 最后切割抛光制作而成.测试结果表明, 静态下该芯片8条输出阵列波导形成清晰干涉光斑, 在电压达到130 V时, 热调制相位后, 光斑移动5.5°.
光子器件 光学相控阵 硅基二氧化硅 热光调制 不等间距波导 Photonic devices Optical phased array Silica on silicon Thermo-optic modulation Unequal spacing waveguide 
光子学报
2019, 48(4): 0423001
颜跃武 1,2安俊明 1,2张家顺 1,*王亮亮 1[ ... ]王玥 1
作者单位
摘要
1 中国科学院半导体研究所集成光电子学国家重点联合实验室, 北京 100083
2 中国科学院大学材料科学与光电技术学院, 北京 100049
论述了光学相控阵的原理,回顾了光学相控阵的发展历程,特别是近年来硅光子相控阵的研究进展。利用与互补金属氧化物半导体(CMOS)工艺线相兼容的绝缘体上硅(SOI)技术实现了大规模的集成,目前国外报道的最大的硅光子相控阵集成了4096个阵元。在硅光子上实现的二维光束扫描角度可以达到46°×36°,光束宽度只有0.85°×0.18°,天线的损耗小于3 dB,且旁瓣抑制大于10 dB。此外,采用微机电系统(MEMS)器件实现的光学相控阵的光束扫描速度超过0.5 MHz。阐述了各种方式实现光学相控阵的优缺点,并对未来发展前景进行了展望。最后,介绍了光学相控阵在激光雷达、成像、**上的应用。
光学器件 光波导 光学相控阵 扫描角度 绝缘体上硅 
激光与光电子学进展
2018, 55(2): 020006
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Both the 4×20 GHz coarse wavelength division multiplexing and LAN-WDM receiver optical sub-assemblies (ROSAs) were developed. The ROSA package was hybrid integrated with a planar lightwave circuit arrayed waveguide grating (AWG) with 2% refractive index difference and a four-channel top-illuminated positive-intrinsic-negative photodetector (PD) array. The output waveguides of the AWG were designed in a multimode structure to provide flat-top optical spectra, and their end facet was angle-polished to form a total internal reflection interface to realize vertical coupling with a PD array. The maximum responsivity of ROSA was about 0.4 A/W, and its 3 dB bandwidth of frequency response was up to 20 GHz for each transmission lane. The hybrid integrated ROSA would be a cost-effective and easy-assembling solution for 100 GbE data center interconnections.
060.4230 Multiplexing 230.7370 Waveguides 
Chinese Optics Letters
2018, 16(6): 060603
李超懿 1,2,*安俊明 1,2张家顺 1王亮亮 1[ ... ]王玥 1
作者单位
摘要
1 中国科学院半导体研究所 集成光电子学国家重点联合实验室,北京 100083
2 中国科学院大学 材料科学与光电技术学院,北京 100049
设计并制作了一款应用于IEEE 200/400 GbE标准802.3 bs的阵列波导光栅.该阵列波导光栅使用2.0%的超高折射率差硅基二氧化硅材料,使得芯片尺寸及损耗较小.为了获得平坦化的接收光谱,将输出波导进行展宽,采用多模波导结构,激发若干个高阶模,数个模式叠加使得原本高斯状的光谱顶部产生平坦化,形成箱形接收光谱.设计的阵列波导光栅的中心波长为1 291.10 nm,通道间隔为800 GHz,芯片尺寸为11 mm×4 mm.经过等离子增强化学气相沉积和感应耦合等离子刻蚀工艺制备了芯片,测试结果表明最小的插入损耗为-3.3 dB,相邻通道间串扰小于-20 dB,单通道1 dB带宽在2.12~3.06 nm范围,实现了良好的解复用和平坦化效果,在实际光通信系统中有一定的实用价值.
阵列波导光栅 波分复用 光子器件 平坦光谱响应 光通信 Arrayed waveguide gratings Wavelength division multiplexing Photonic devices Flat spectral response Optical communication 
光子学报
2017, 46(8): 0823003
作者单位
摘要
1 中国科学院半导体研究所集成光电子学国家重点联合实验室, 北京 100083
2 中国科学院大学材料科学与光电技术学院, 北京 100049
现阶段的光模块封装类型已从小型可插拔(SFP)系列逐渐向100 Gb/s可插拔(CFP)系列和4通道SFP(QSFP)系列过渡, 传输速率最高可达400 Gb/s, 发射端激光器消光比大于9 dB, 光波分复用器插入损耗小于1 dB, 发射功率大于0.3 dBm, 接收端探测器响应度为0.7 A/W, 接收灵敏度小于-17 dBm。阐述了在数据中心光互连中可以应用于IEEE制定的40/100 GbE标准802.3 ba的发射和接收集成芯片, 主要包括分立器件组装芯片、混合集成芯片和单片集成芯片, 介绍了其各种类型的基本结构和特性。
光学器件 硅光子 波分复用 阵列波导光栅 数据中心 
激光与光电子学进展
2016, 53(12): 120002
作者单位
摘要
中国科学院半导体研究所 集成光电子学国家重点联合实验室, 北京 100083
设计了一种基于绝缘上层硅的硅-有机物材料混合马赫-曾德干涉型高速电光调制器.利用光束传播法对顶层硅为220 nm的绝缘上层硅基片上的3 dB分束器/合束器的结构参数进行模拟,优化后附加损耗仅为0.106 dB.为提高模式转换效率, 在条形波导和slot波导之间设计了模式转换器, 光耦合效率高达98.8%, 实现了光模式高效转化.利用时域有限差分法模拟了slot波导平板区掺杂浓度对波导内光学损耗的影响, 在几乎不产生光学损耗的情况下, 得到平板区轻掺杂浓度为71017/cm3, 调制器设计总损耗为0.493 dB.利用薄膜模式匹配法对slot波导结构进行仿真分析, 考虑slot区等效电容及平板区等效电阻对带宽的影响, 优化后得到slot波导结构的限制因子为0.199.采用slot波导与强非线性有机材料LXM1结合的绝缘上层硅平台实现了强普克尔效应, 得到电光调制器半波电压长度积为1.544 V·mm, 电学响应3 dB带宽为137 GHz.
硅-有机物材料混合 槽式波导 电光调制器 马赫曾德干涉 模式转换器 Silicon-organic hybrid Slot waveguide Electro-optic modulator Mach-Zahnder interference Mode converter 
光子学报
2016, 45(5): 0523001
作者单位
摘要
中国科学院半导体研究所 集成光电子学国家重点实验室,北京 100083
采用电子束光刻和感应耦合等离子刻蚀等工艺,研制了一种基于绝缘硅材料的的微环谐振可调谐滤波器.滤波器微环半径为5 μm左右,波导截面尺寸为(350~500 nm)×220 nm不等.测试结果表明,波导宽度为450 nm时器件性能最为理想,其自由频谱宽度为16.8 nm,1.55 μm波长附近的消光比为22.1 dB.通过对微环滤波器进行热光调制,在21.4 ℃~60 ℃温度范围内实现了4.8 nm波长范围的可调谐滤波特性,热光调谐效率达到0.12 nm/℃.研究了基于单环和双环的多通道上下载滤波器,实验结果表明多通道滤波器的信号传输存在串扰,主要是不同信道之间的串扰,尤其在信号上载时,会在相邻信道产生较大串扰.
绝缘硅 微环谐振 热光效应 滤波器 串扰 Silicon On Insulator(SOI) Microring resonator Thermo-optic effect Filters Crosstalk 
光子学报
2011, 40(8): 1143

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!