作者单位
摘要
1 中国科学院西安光学精密机械研究所, 西安 710119
2 西安电子科技大学 计算机学院, 西安 710071
在位相差异技术原理的基础上, 利用现有平台, 通过室内实验以及室外推扫成像试验, 检验了位相差异技术波前反演的效果.试验表明: 以干涉仪实测波前与反演波前的残差均方根误差作为评价标准, 基于位相差异技术的波前反演精度可达1/40λ(λ=632.8 nm); 同时, 利用反演波前进行的图像复原滤波能够大幅改善推扫退化图像的品质, 复原后图像信噪比的提升量优于40%, 奈奎斯特频率处调制传递函数的提升量超过80%.间接地证明了位相差异波前反演技术的实际效能, 为位相差异波前反演技术的空间应用奠定了基础.
空间光学相机 波前反演 位相差异 图像复原滤波 Space-borne camera Wave-front sensing Phase diversity Image restoration 
光子学报
2017, 46(1): 0111001
作者单位
摘要
1 中国科学院西安光学精密机械研究所, 陕西 西安 710119
2 中国科学院大学, 北京 100049
使用光学设计软件设计了一种大视场可见红外一体化反射式光学系统, 可见光和红外视场的大小分别为5.2°和5.12°。在光学系统的轨道高度为675 km的情况下, 可对地面目标进行61.3 km和60.36 km的大幅宽观测。在光学系统采用偏视场设计将可见光和红外光的视场进行分离, 可以实现双光路、双波段、双视场同时成像观测, 避免了使用分光装置对光能量吸收造成损失, 提高了光能利用率。可见光系统选用一个焦距为9 000 mm的三反系统, 红外光学系统选用两个三反系统, 后置三反系统的入瞳与前置三反系统的出瞳位置重合, 系统总焦距为2 025 mm。经过优化, 可见光系统的MTF在50 lp/mm达到0.45以上, 红外系统的MTF在25 lp/mm达到0.65以上, 成像质量均达到衍射极限。
大视场 可见光 红外光 偏视场 large field visible light infrared light partial field 
红外与激光工程
2016, 45(10): 1018003
作者单位
摘要
1 中国科学院西安光学精密机械研究所空间光学研究室, 陕西 西安 710119
2 中国科学院大学, 北京 100049
提高光学系统分辨率的主要方法是增大光学系统的通光口径,而使用子镜拼接得到一块等效大口径主镜是增大通光口径的常用方法。拼接主镜光学系统入轨后子镜进行展开,展开位置与设计位置偏差大小决定光学系统成像质量好坏,因此需要对子镜展开位置的精度进行分析。使用光学软件对拼接主镜光学系统建模,调整子镜6个自由度的位置误差得到其与系统成像质量的关系曲线。结果表明,针对不同位置的子镜,相同位置误差产生的系统波前误差的均方根(RMS)值大小不同,中层子镜对沿着X轴方向的移动敏感,而外层子镜对沿着Y轴方向上的移动敏感。通过对每个子镜单独分配位置误差与每个子镜分配相同的位置误差两种方式对子镜的展开精度进行误差分配,结果表明在产生相同波前误差的情况下,单独对每个子镜位置误差进行定义的精度相对较为宽松。
光学设计 拼接主镜 波前误差 位移误差 倾斜误差 
光学学报
2016, 36(11): 1122005
作者单位
摘要
中国科学院西安光学精密机械研究所 空间光学研究室, 陕西 西安 710119
以轴对称光学系统的初级矢量波像差理论为基础, 通过引入孔径缩放因子和孔径偏移矢量, 获得了离轴反射光学系统初级像差特性。通过分析可知: 离轴反射光学系统的初级像差依然由球差、彗差、像散组成。由于孔径缩放因子存在, 离轴反射光学系统的波像差系数均有不同比例的减小, 且轴对称光学系统的高级孔径像差会在对应离轴光学系统中引入较低阶孔径像差, 例如轴对称光学系统未校正球差, 对应的离轴光学系统除过球差外还将引入彗差、像散等。相比于轴对称光学系统的像差, 由于孔径偏移矢量的引入, 离轴反射光学系统的像差不再关于中心视场旋转对称, 有可能在轴外视场产生像差零点。
矢量波像差 离轴反射光学系统 像差 vector wavefront aberration off-axis mirror optical system aberration 
红外与激光工程
2016, 45(6): 0618002
作者单位
摘要
1 中国科学院西安光学精密机械研究所空间光学应用研究室, 陕西 西安 710119
2 中国科学院大学, 北京 100049
为了提高大口径望远镜的装调效率,对具有三点支撑变形的大口径三反射消像散望远镜在装调过程中的像散场分布进行了研究。采用矢量像差理论和孔径坐标变换,分析了在孔径光阑和非孔径光阑处反射镜存在三点支撑变形时,像散在望远镜失调和非失调情况下的分布特性。最后,在光学设计软件CODE V中利用条纹Zernike多项式Z10和Z11来模拟反射镜三点支撑变形引入的面形误差,通过实际光线追迹对像散场分布特性进行了验证。分析结果表明:当三点支撑变形位于主镜(孔径光阑)上时,不会影响望远镜的像散场分布;当三点支撑变形位于次镜或三镜(非孔径光阑)上时,将会产生与视场共轭成线性的像散项,导致望远镜在失调或非失调情况下的像散出现不同的分布特性。在最终装调时,通过分析像散场的分布可对望远镜的装调状态进行定性的分析,从而为大口径三反射消像散望远镜的装配提供指导。
光学设计 像散场 矢量像差 三点支撑变形 三反射消像散望远镜 
光学学报
2016, 36(6): 0622002
作者单位
摘要
1 中国科学院西安光学精密机械研究所 空间光学应用研究室, 陕西 西安 710119
2 西安电子科技大学 计算机科学与技术学院, 陕西 西安 710071
波前编码作为一种经典的计算成像技术, 以能够大幅度拓展光学成像系统的焦深而闻名, 并得到了学术界及工业界长期的关注。实际上, 除了焦深的拓展, 波前编码还具备实现超分辨率成像的潜力, 而这在已有的研究中鲜有讨论。一方面, 相位掩膜板的引入在降低光学系统传递函数并使其对离焦不敏感的同时, 也有效降低了欠采样数字成像系统中的混叠效应, 从而提供了更适合于进行超分辨率重构的数据源。另一方面, 相位掩膜板所引起的点扩散函数支持域的巨大化效应使得以数字的方式、从采样间隔可以被认为是无限小的、理想的光学焦平面点扩散函数来计算与特定探测器物理像元大小相对应的采样点扩散函数成为可能。因此, 从这两个特点出发, 提出了一种为波前编码系统定制的、基于单帧图像放大的超分辨率重构算法, 并且研制了原型样机对超分辨率的效果进行了检验。试验表明: 焦距50 mm/F数4.5的Cooke三片系统除了焦深拓展超过20倍且具有接近衍射受限成像品质之外, 利用复原算法能够实现至少3倍的高品质超分辨率重建效果。
波前编码 计算成像 焦深拓展 超分辨率 wave-front coding computational imaging depth of focus extension super-resolution 
红外与激光工程
2016, 45(4): 0422003
作者单位
摘要
中国科学院西安光学精密机械研究所空间光学研究室, 陕西 西安 710119
利用条纹泽尼克多项式来表征自由曲面的光学元件,并将多项式中表示初级球差、彗差、像散项转换为矢量形式。利用矢量波像差理论,研究了自由曲面光学元件校正光学系统初级像差的特性。通过分析可知,自由曲面在光学系统中不同位置时所校正的像差特性不同。当自由曲面位于光学系统的孔径光阑(入瞳或出瞳)上可以校正光学系统全视场内为常数的初级像差;当自由曲面远离孔径光阑时,由于轴外视场成像光束口径的缩放与偏移,自由曲面可以校正非对称初级像差,且不同初级像差与视场依据关系不同。
光学设计 矢量波像差 自由曲面 光学系统 像差 
光学学报
2016, 36(5): 0522001
作者单位
摘要
中国科学院西安光学精密机械研究所空间光学研究室, 陕西 西安 710119
依据波像差理论和坐标变换分析了大口径反射镜面形误差对光学系统初级像差特性的影响。利用Fringe Zernike多项式表示光学系统的波像差和反射镜面形误差,通过变换矩阵分析可知当系统孔径光阑(出瞳或入瞳)光学表面存在面形误差时,将会在全视场内引入常量的波像差系数。如果非系统孔径光阑表面存在面形误差,由于孔径变换的原因,除了在全视场内引入的常量波像差系数外,还将会在全视场内引入低阶的波像差系数且其零点位于中心视场,不同的波像差系数与视场的依据关系不同。分析结果表明利用坐标变换矩阵可以对反射镜面面形误差引入的波像差进行定性分析,以提高大口径反射光学系统的装调效率。
光学设计 波像差 面形误差 光学系统 三反射镜消像散系统 变换矩阵 
光学学报
2013, 33(4): 0422002
作者单位
摘要
1 中国科学院西安光学精密机械研究所, 陕西 西安 710119
2 中国科学院研究生院, 北京 100039
3 上海微小卫星工程中心, 上海 200050
在瑞奇-康芒检测中,被检平面本身所固有的像散和大曲率在被检系统波像差数据中都表现为像散。由于被检平面处于发散光路中,这就使得平面面形与系统波像差之间的关系(即影响函数)变得十分复杂,推导起来十分困难,只能进行定性或半定量检测。文中介绍了如何通过计算机光线追迹模拟瑞奇-康芒检验,在两个瑞奇角下得到两组影响函数,以此建立过定方程组,由干涉仪检测得到的两个不同瑞奇角下的系统波像差,通过最小二乘法解过定方程组,拟合得到被检平面镜的面形误差;实现了大口径平面镜的定量检测,并以平面镜直接检验的面形误差作为对比,检验结果的一致验证了该方法的准确性与可行性。
光学检测 瑞奇-康芒检验 波像差 影响函数 optics test Ritchey-Common test wavefront aberration influence function 
应用光学
2010, 31(6): 984

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!