作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室 超精密光学工程研究中心, 吉林 长春 130033
2 中国科学院大学, 北京 100049
设计了一种狭缝柔性结构的光学元件调节机构, 使光学元件在具备较高调节精度的同时, 保持较高的导向精度。采用弹性力学应力函数法分析了狭缝柔性结构的刚度, 以径向刚度与轴向刚度的比值为目标函数, 对狭缝柔性结构尺寸参数进行了优化, 在不超过柔性结构材料屈服应力等约束条件下, 刚度比最优值达到1 5736, 较大的刚度比值可以减小调节机构的耦合位移, 从而提高机构的导向精度。该结构加工装配方便, 可实现三自由度(θx-θy-Z)调节。对优化后的柔性结构进行仿真分析, 结果表明: 径向刚度与轴向刚度比值的仿真值为1 6604, 解析值与仿真值误差为523%, 证明了刚度分析方法的有效性。优化后的结构, 轴向调节行程为209 mm, 绕x轴偏转角度调节行程为±166 mrad, 绕y轴偏转角度调节行程可达到±144 mrad, 满足光学元件调节的大行程要求。
光刻物镜 调节机构 狭缝柔性结构 刚度比 导向精度 lithographic objective adjustment mechanism slit diaphragm flexures stiffness ratio guide precision 
中国光学
2017, 10(6): 790
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室超精密光学工程研究中心, 吉林 长春 130033
设计了一种电容位移传感器在线标定平台, 用于位移的高精度调节和检测。该平台的运动对称中心轴、测量光路的对称中心轴和传感器的传感轴共轴, 故从测量原理上减小了阿贝误差。标定平台具有z/tip/tilt调节功能, 保证了传感器的传感面和被测面板的被测面之间的装调对准。介绍了标定平台的组成和标定方法的原理, 采用对称平行四边形机构实现了微位移调节, 基于柔度矩阵法(CMM)分析了导向机构的输出柔度和行程。试验测得动平台行程为735.162 μm, 和有限元法(FEM)、CMM计算结果的误差分别为7.410%和4.633%, 满足行程误差要求。经过标定补偿后, 传感器的线性度由0.014 21%提高至0.006 231%。实验结果显示, 该线性度标定方法精度高, 标定后的传感器满足位移精密调节机构使用要求。
电容传感器 线性度标定 标定平台 柔度矩阵 capacitive sensor linearity calibration calibration platform compliance matrix 
光学 精密工程
2016, 24(1): 143
作者单位
摘要
中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室 超精密光学工程研究中心, 长春 130033
为了找出耦合误差产生的根源, 探讨了柔性偏心机构设计方法.首先, 给出了机构组成和工作原理;然后, 基于柔度矩阵法对机构建模, 分别推导了桥式位移放大机构、导向机构、连接机构的柔度;最后, 综合得到机构的整体柔度.分析结果表明柔度矩阵法得到的输出柔度理论值和有限元法得到的结果误差为8.126%, 机构的一阶固有频率为73.78 Hz.在40N的驱动力范围内, 机构可以实现66.466 μm的行程, 透镜和机构上的最大应力分别为0.0711 MPa和235.22 MPa, Y/Z/RX/RY/RZ耦合误差和X向行程的比分别为0.0543%、0.0082%、1.218×10-8rad/μm、1.870×10-7rad/μm、6.073×10-7rad/μm.调节后镜片面形PV值优于24 nm, RMS值优于5 nm, 并且主要为像散.通过合理的柔度设计, 机构接近完全解耦, 揭示了不合理的机构刚度是产生调节耦合误差的根源.
耦合误差 光刻 物镜 偏心调节机构 柔度矩阵法 Coupling error Lithography Objective lens Eccentric adjustment mechanism Compliance matrix method 
光子学报
2015, 44(9): 0922001
作者单位
摘要
中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
为补偿光刻物镜由不均匀照明引入的Z5 像散,设计了一种主动变形镜,并分析该主动变形镜的像散补偿性能。利用有限元分析方法,建立主动变形镜的有限元模型,得到主动变形镜调节能力、刚体位移误差、固有频率及最大应力等性能。结果表明,主动变形镜在50 N 驱动力作用下可以实现镜片表面面形均方根(RMS) 837 nm Z5 像散补偿,伴随产生的镜片表面高阶像差仅为RMS 1.124 nm,三个方向刚体平移仅为0.49、0.52、0.13 nm,三个方向的刚体旋转仅为2.21、1.73、1.10 ms,主动变形镜一阶固有频率达到2555 Hz,最大应力为0.852 MPa,满足光刻物镜像散补偿需求。
成像系统 主动光学 像散补偿 有限元分析 
激光与光电子学进展
2015, 52(7): 072203
作者单位
摘要
中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
在保证光学元件极高面形精度和极高调节精度的同时,为了实现更大的调节行程,采用柔性环片结构,设计了一种光学元件轴向精密调节机构。建立了调节机构的有限元分析模型,分析了主要设计参数对调节机构的调节行程、应力值、固有频率、光学元件上下表面面形均方根(RMS)值等性能指标的影响。结果表明:轴向调节机构可实现299.2 μm的调节行程,且机构的最大应力值为141.3 MPa,固有频率值为95.3 Hz,光学元件上下表面的面形RMS值在1.3 nm以内,满足光刻投影物镜对轴向调节光学元件的使用需求。
光学器件 轴向调节机构 有限元分析 柔性环片 
光学学报
2014, 34(s2): s222001
作者单位
摘要
中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
为了将激光弯曲成形技术应用于精密位移调整领域实现亚微米精度的位移调整,自行设计和搭建了激光微位移调整与测量平台,将光纤激光通过线性透镜和扫描振镜聚焦在不锈钢薄板上作匀速扫描运动,实时监测加工过程样件自由端的输出位移。建立了样件激光微位移调整模型,在此基础上研究改变激光功率、扫描速度、光束照射位置以及离焦量等参数对调整位移的影响。结果表明,样件通过该平台实现了亚微米级重复精度的精密位移调整,改变激光照射位置是精确改变调整位移的首选;通过优化工艺参数,降低了激光加工过程中样件表面的损伤。
测量 微位移调整 激光弯曲成形 光纤激光 工艺参数 
激光与光电子学进展
2014, 51(9): 091201
作者单位
摘要
中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 长春 130033
胶粘剂广泛应用于光机结构中, 其对光机结构的动力学特性有不可忽视的影响。本文采用有限元建模的方法对含胶粘剂的透镜镜组进行动力学特性分析。建立忽略胶层、节点耦合以及“粘合单元 ”连接胶合面三种有限元模型, 并分别对两种胶粘剂粘接的透镜镜组进行模态分析。为了验证三种建模方法的有效性, 对不同透镜镜组进行模态测试, 获取一阶模态频率与振型。仿真计算与测试结果对比表明:忽略胶层影响的模型计算结果存在较大误差, 节点耦合以及 “粘合单元 ”连接胶合面所建立的模型的一阶模态频率与实验测试误差小于 5%, 振型也与测试结果一致。这表明节点耦合以及“粘合单元”连接胶合面两种有限元模型是有效的。进一步分析胶粘剂材料属性对透镜模态频率的影响, 胶粘剂的杨氏模量对模态频率影响明显, 泊松比与密度影响较小, 对光机结构中胶粘剂的选用具有参考意义。
胶粘剂 光机结构 动力学 有限元分析 模态测试 adhesives opto-mechanical dynamics finite element analysis modal test 
光电工程
2014, 41(6): 75
作者单位
摘要
中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
针对深紫外光刻投影物镜的像质补偿要求,对偏心调节时的透镜进行受力分析,基于柔度矩阵法设计了一种柔性多弹片透镜支撑结构,研究了透镜面形随调节力的变化规律,采用有限元法分析了调节力与透镜面形峰谷(PV)值、均方根(RMS)值和Fringe Zernike多项式系数之间的关系。计算结果表明:调节时通过降低调节力的大小,可以控制面形劣化程度。采用具有吸收调节力功能的柔性支撑结构后,在50 N的驱动力偏心调节时,透镜上表面面形PV值和RMS值分别为2.704 nm和0.528 nm,透镜下表面面形PV值和RMS值分别为2.984 nm和0.571 nm。透镜面形的PV值、RMS值及Fringe Zernike多项式系数随调节力线性变化,但是调节力不会改变各种像差的性质,它引入的透镜像差主要为像散。
光学器件 深紫外光刻 投影物镜 像差补偿 偏心调节机构 调节力 面形 
中国激光
2014, 41(7): 0716004
作者单位
摘要
中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室, 长春 130033
在Preston假设基础上, 研究并推导了光学元件抛光过程中“花瓣”型截面磨头在双转子运动形式下的去除函数.提出了“花瓣”型截面磨头的离散点弧长表达方法, 并讨论了该方法的适用范围; 基于离散点弧长法, 推导了“花瓣”型截面磨头在双转子运动形式下的去除函数表达式; 根据可调步长式曲线逼近原理研究了类高斯型目标去除函数的逼近算法; 并得到了类余弦型去除函数的双转子抛光模参量.从而证明了双转子抛光技术可以得到类高斯型去除函数.
双转子 离散点弧长 “花瓣”型截面磨头 曲线逼近 类高斯去除函数 Dual-rotor Discrete points and its arc length Grinding head with petal-like section Curve approximation Gaussian-like removal function 
光子学报
2013, 42(3): 282
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
基于数控技术,提出了一种非接触式光学元件表面超光滑液体抛光方法。通过磨头中心孔为抛光表面提供抛光液,抛光液在磨头自转的带动下与光学元件表面相互作用,实现光学元件表面材料的微量去除,利用计算机控制抛光磨头的运动轨迹完成对光学元件表面的抛光。根据上述原理,设计和研制了数控非接触表面超光滑光学元件加工机床样机,样机直线运动轴最低进给速度为0.000 1 m/s,定位精度为0.008 mm;摆动轴最低转速为0.002 8 r/min,定位精度为15″。抛光实验结果表明,经过20 min的超光滑加工,熔石英材质光学元件上两点的表面粗糙度Ra值分别由加工前的1.03 nm和0.92 nm提高到加工后的0.48 nm和0.44 nm,显著提高了加工精度。
光学制造 非球面 非接触加工 超光滑抛光 液体抛光 加工机床 optical fabrication aspheric surface non-contact fabrication super-smoothing polishing liquid polishing polishing machine 
光学 精密工程
2012, 20(4): 719

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!