作者单位
摘要
华东交通大学机电与车辆工程学院, 水果智能光电检测技术与装备国家地方联合工程研究中心, 江西 南昌 330013
紫米是生活中常见的食材, 具有丰富的营养价值。 由于紫米价格较高导致染色紫米大量流入市场。 本文使用太赫兹时域光谱技术结合化学计量学方法探索紫米掺假的快速检测方法。 采用太赫兹时域光谱技术(THz-TDS)采集0~7 THz范围内紫米掺假的光谱数据, 并选择0.5~2.5 THz波段的吸收系数谱和折射率谱进行分析并采用化学计量学方法对光谱数据进行建模分析。 分别采用Savitzky-Golay卷积平滑(SG Smoothing, SG平滑)、 基线校正(Baseline)、 归一化(Normalization)、 多元散射校正(MSC)等方法进行光谱预处理, 结合偏最小二乘判别分析(PLS-DA)对紫米、 紫米掺染色大米和紫米掺染色黑米进行定性分析。 定性分析结果显示, 通过主成分分析(PCA)的三种样品平面分布存在明显差异; 经过基线校正的光谱数据建立的PLS-DA模型效果最佳, 误判率为0。 接着使用偏最小二乘法(PLS)结合SG平滑、 Baseline、 Normalization、 MSC等预处理方法分别对紫米中掺染色大米和紫米中掺染色黑米的光谱数据建立PLS定量模型。 结果显示, 采用基线校正预处理方法的PLS建模效果最佳, 紫米掺染色大米的预测集相关系数为0.936, 预测集均方根误差(RMSEP)为0.095。 紫米掺染色黑米的预测集相关系数为0.914, 预测集均方根误差为0.096。 为对比分析线性(PLS)与非线性(LS-SVM)两种定量模型方法的预测精度, 采用相同预处理方法后的紫米掺假含量光谱数据建立最小二乘支持向量机(LS-SVM)预测模型, 选用径向基函数(RBF)作为核函数。 结果表明采用基线校正处理后LS-SVM模型效果最佳, 紫米中掺染色大米的预测集均方根误差(RMSEP)为0.092, 预测集相关系数(Rp)为0.979; 紫米中掺染色黑米的预测集均方根误差(RMSEP)为0.093, 预测集相关系数(Rp)为0.948。 对比发现对紫米掺假的含量建立LS-SVM预测模型较PLS模型的稳定性更好、 精确度更高。 研究表明, 太赫兹时域光谱结合化学计量学方法可为紫米掺假的定性定量分析提供快速精确的分析方法。
太赫兹时域光谱 紫米 偏最小二乘 最小二乘支持向量机 Terahertz time-domain spectroscopy Purple rice Partial least squares Least squares support vector machine 
光谱学与光谱分析
2020, 40(8): 2382
作者单位
摘要
华东交通大学机电与车辆工程学院, 水果智能光电检测技术与装备国家地方联合工程研究中心, 江西 南昌 330013
明矾是一种可以改良粉条粉丝易断粗糙特性的违法添加剂, 明矾的含量过高进入人体后会直接影响身体健康。 结合太赫兹光谱技术探索红薯淀粉中明矾含量快速检测方法。 采用太赫兹时域光谱系统(Terahertz time domain spectroscopy, THz-TDS)于常温下获取0.5~7 THz范围内红薯淀粉、 明矾及其混合物的光谱数据。 因0~0.5 THz测得的频谱均为噪声, 高频段区域的吸收系数大、 信噪比低, 故选取0.5~2 THz波段的吸收系数谱和折射率谱进行分析。 发现明矾在该波段存在明显的特征吸收峰, 可作为指纹特征用于物质识别。 分别采用Savitzky-Golay卷积平滑(SG Smoothing, SG 平滑)、 基线校正(Baseline)、 归一化(Normalization)等方法进行光谱预处理, 再结合偏最小二乘(partial least squares, PLS)对红薯淀粉中明矾含量建立预测模型。 结果表明, 采用原始光谱、 SG 平滑、 Baseline、 Normalization等光谱数据建立PLS模型的最佳因子数(principal component factors)分别为3, 3, 3和2; 校正集相关系数(rc)分别为0.982, 0.980, 0.982和0.984; 预测集相关系数(rp)分别为0.982, 0.979, 0.982和0.987; 校正集均方根误差(root mean square error of calibration, RMSEC)分别为0.011, 0.012, 0.012和0.011; 预测集均方根误差(root mean square error of prediction, RMSEP)分别为0.013, 0.014, 0.013和0.012; 可知归一化预处理后建立PLS模型效果最佳。 为对比分析线性(PLS)与非线性(LS-SVM)两种定量模型方法的预测精度, 采用相同预处理方法后的红薯淀粉中明矾含量光谱数据建立最小二乘支持向量机(least squares support vector machine, LS-SVM)预测模型, 选用径向基函数(RBF)作为核函数。 结果表明, 归一化预处理后建立LS-SVM模型效果最佳, 其预测集均方根误差(RMSEP)为0.0047, 预测集相关系数(rp)为0.997 2。 发现对红薯淀粉中明矾含量建立LS-SVM预测模型的稳定性更好、 精确度更高。 采用太赫兹时域光谱结合LS-SVM和PLS对红薯淀粉中明矾含量进行定量分析。 结果表明, 采用归一化预处理后的LS-SVM比PLS模型的预测效果更优, 可能是红薯淀粉与明矾混合物中含有更多的非线性信息。 研究表明, 太赫兹时域光谱结合化学计量学方法可为红薯淀粉中明矾含量的定量分析提供快速精确的分析方法。
太赫兹时域光谱 明矾 红薯淀粉 偏最小二乘 最小二乘支持向量机 Terahertz time-domain spectroscopy Alum Sweet potato starch Partial least squares Least squares support vector machine 
光谱学与光谱分析
2020, 40(3): 727
作者单位
摘要
华东交通大学机电与车辆工程学院, 江西 南昌 330013
使用太赫兹时域光谱(THz-TDS)技术对葛粉中掺薯粉的含量进行定性、定量检测。对葛粉中掺薯粉的光谱数据进行采集,利用偏最小二乘法(PLS)建立葛粉掺薯粉定性模型以判断葛粉中是否掺薯粉,得到PLS的总误判率为0%,模型相关系数为0.925。结果表明:PLS可实现葛粉中是否掺薯粉的定性判别。再利用PLS和最小二乘支持向量机(LS-SVM)算法分别建立葛粉中掺薯粉的定量模型。利用PLS建立的模型的相关系数为0.932,预测集的均方根误差(RMSE)为 2.6%;利用LS-SVM建立的模型的相关系数为0.957,预测集的RMSE为 1.6%,结果表明:利用LS-SVM的葛粉掺薯粉定量模型更准确,说明THz-TDS技术可用于对葛粉中掺薯粉进行快速、有效、无损检测。
光谱学 太赫兹时域光谱(THz-TDS) 葛粉 偏最小二乘(PLS) 最小二乘支持向量机(LS-SVM) 
激光与光电子学进展
2019, 56(20): 203001
作者单位
摘要
华东交通大学机电与车辆工程学院, 江西 南昌 330013
使用太赫兹时域光谱技术(THz-TDS)对葛粉中苯甲酸含量进行了定量分析。检测样品为有塑料包装袋的葛粉。对原始数据进行多元散射校正、基线校正、一阶导数、二阶导数等预处理,利用偏最小二乘(PLS)法对葛粉中苯甲酸的含量建立预测模型。检测结果显示:无塑料包装袋样品的模型决定因子为0.975,预测集的均方根误差(RMSEP)为1.126%;有塑料包装袋样品的模型决定因子为0.976,RMSEP为1.356%。
成像系统 太赫兹时域光谱 苯甲酸 偏最小二乘法 葛粉 塑料包装 
激光与光电子学进展
2019, 56(4): 041101

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!