杨科 1,*薛媛元 1贾波 2白宣庆 1[ ... ]陈娟 1
作者单位
摘要
1 西安应用光学研究所,陕西 西安 710065
2 陆装西安军代局驻西安地区第八军代室,陕西 西安 710065
损伤阈值测量装置是强激光技术的重要技术指标,主要用于强激光光学元件的研制和测试,而同步触发模块作为模块之间时序的控制器,是研制损伤阈值测量装置的关键技术之一。介绍了一种用于激光损伤阈值测量装置的同步触发模块及方法。设计了基于现场可编程门阵列(field programmable gate array,FPGA)为主控芯片的硬件方案,通过上位机操控软件设置同步触发参数,来控制各路输出同步信号的宽度和各路信号之间的时序,可极大提高同步触发的精度和效率。通过实验验证,同步脉冲信号之间的调节精度为2 ns,同步脉冲信号的最小宽度为10 ns,满足激光损伤阈值测量装置的要求。
损伤阈值 同步触发 FPGA damage threshold synchronous trigger field programmable gate array 
应用光学
2023, 44(6): 1228
作者单位
摘要
西安应用光学研究所,陕西 西安 710065
设计并搭建了一套1 064 nm、532 nm的双波长光学元件激光损伤阈值自动测量装置,用于光学元件膜层激光损伤阈值的自动化检测。装置主要由脉冲激光光源、光束参数诊断组件、损伤在线诊断组件、待测件扫描运动平台和控制系统组成。整个测量装置和测量过程由基于Labview编制的计算机综合测量软件自动控制,可实现损伤阈值在0.1 J/cm2~100 J/cm2能量密度范围内的自动测量,并利用该装置对1 064 nm增透膜和铝反射膜样品进行了测量,得到损伤阈值分别为27.09 J/cm2和3.21 J/cm2,相对不确定度分别为3.91%和5.61%。
自动测量 激光损伤阈值 1-on-1 能量密度 相对测量不确定度 automatic measurement LIDT 1-on-1 energy density relative measurement uncertainty 
应用光学
2023, 44(4): 852
作者单位
摘要
1 西安应用光学研究所 国防科技工业光学一级计量站,陕西 西安 710065
2 西安导引科技有限责任公司 工艺部,陕西 西安 710065
作为红外标准光源,要求30 ℃~420 ℃黑体能快速升温到设定温度点,并保持温度稳定。针对其升降温功率差别大、滞后大等特点,用开关控制冲击响应自整定方法,得到黑体温升超调量、最大升降温速率等参数,采用复合智能温控策略,实现了30 ℃~420 ℃黑体温升前期快,接近设置温度时改以渐进方式达到并稳定在设定温度点。实验结果表明,实现了30 ℃~420 ℃黑体无超调地到达设定温度点,且稳定性为±0.03 ℃/min,该指标达到了国际同类产品水平。
温度控制 黑体 PID控制 大滞后系统 开关控制 自整定 阶跃响应 temperature control blackbody PID control large delay system bang-bang control self-tuning step response 
应用光学
2023, 44(2): 392
作者单位
摘要
光亮度是表征发光体的重要光度特性参数。提出了一种超低亮度计的设计方法,描述了超低亮度计的工作原理和组成;利用微弱光信号处理技术、非线性校准技术、制冷散热技术等实现了超低亮度的自动测量;根据亮度计的测量原理,对仪器进行了标定,测量不确定度达到5%。超低亮度计可适用于实验室和现场等测试场所,为微光夜视装备、显示系统、特种光源、发光材料等的性能评估测试和校准提供计量保障。
应用光学
2022, 43(4): 701
作者单位
摘要
2西安北方光电科技防务有限公司,陕西 西安 710043
红外辐射计用于红外热像仪测试设备的校准。介绍了一种用于红外辐射计的测量模块及方法。设计了采样保持的测量方案,通过参考信号生成采样脉冲,并将采样点设置在每个信号周期的1/4相位处,能显著提高微弱信号的测量能力。对于35 ℃的黑体辐射信号,通过与现有方案的对比实验,测量信号强度可提高57.6%;在红外热像仪测试设备背景温度为22 ℃条件下,通过与现有仪器的对比测试,测量信号精度可提升50%以上。
应用光学
2022, 43(4): 738
作者单位
摘要
1西安应用光学研究所,陕西 西安 710065
大功率激光功率测量常用量热法,但溯源复杂。介绍了具有较高测量精度的基于光压原理的大功率激光功率测量方法,设计了利用1/105精度天平大功率激光测量实验,测试了基于GaAs半导体材料制作的反射镜的反射率及损伤阈值,确定了基于GaAs半导体材料反射镜的相关性能。得到了普通实验室条件下的功率测量重复性及线性,验证了1/105精度天平用于大功率激光测量的可行性。通过实验结果结合理论计算,得出利用1/105精度天平的光压测量功率的测量上限可以达到3×104 W以上。
应用光学
2022, 43(4): 798
作者单位
摘要
哈尔滨工业大学可调谐(气体)激光技术国家级重点实验室,黑龙江 哈尔滨 150001

2 μm、中波红外(3~5 μm)和长波红外(8~12 μm)波段位于大气传输窗口和人眼安全范围内,涵盖众多气体原子和分子的共振吸收峰,在光谱学、遥感、通信、地球大气环境监测和光电对抗等领域具有重要的应用价值。目前,获取中长波红外波段激光的方法分为线性和非线性两种。首先分析了两种方法在中长波红外激光领域的国内外最新研究进展。之后详细地介绍了哈尔滨工业大学可调谐(气体)激光技术国家级重点实验室在非线性光学频率转换领域近三年取得的研究成果,包含Ho∶YAG调Q激光器及其泵浦的磷锗锌(ZnGeP2, ZGP)、硒镓钡(BaGa4Se7, BGSe)和硒化镉(CdSe)三种非线性晶体在中长波红外非线性光学频率转换器中的应用。相信随着2 μm超短脉冲激光器的发展,高功率超短脉冲中长波红外激光技术会成为未来的研究热点。

激光光学 Ho∶YAG 中波红外激光 长波红外激光 磷锗锌 硒镓钡 硒化镉 
中国激光
2022, 49(1): 0101002
作者单位
摘要
哈尔滨工业大学 可调谐激光技术国家级重点实验室,黑龙江 哈尔滨 150001
2 μm、中波红外3~5 μm及长波红外8~12 μm波段的激光处于大气传输窗口,在激光医疗、环境监测、激光雷达、化学遥感和红外对抗等领域有着非常广阔的应用前景。基于非线性频率转换技术,采用非线性光学晶体在实现中长波红外固体激光输出方面具有结构简单、宽调谐和高功率等技术优势。尤其是使用2 μm单掺Ho固体激光器泵浦ZnGeP2晶体,在3~5 μm和8~10 μm中长波红外输出中性能优异。在平均输出功率方面,目前可达到102 W@3~5 μm、12.6 W@8.2 μm以及3.5 W@9.8 μm的输出水平,光束质量M2均小于3,其中中波的光光转换效率可达60%。文中针对2 μm单掺Ho固体激光器及ZnGeP2晶体在中长波输出方面进行了总结。
中长波红外 非线性光学 固体激光器 2 μm 2 μm middle-long-wave infrared nonlinear optics solid laser 
红外与激光工程
2020, 49(12): 20201056
作者单位
摘要
哈尔滨工业大学, 可调谐激光技术国家级重点实验室, 哈尔滨 150001
中波红外3~5 μm波段以及长波红外8~12 μm波段的激光处于大气传输窗口, 在激光成像、环境监测、激光雷达、激光医疗、化学遥感和红外对抗等领域有着非常广阔的应用前景。基于非线性光学晶体, 采用光学非线性频率变换技术在实现中长波红外固体激光输出方面具有明显的技术优势。该方法激光器结构简单, 且晶体本身并不参与能量交换, 因而没有量子亏损, 从而产热很少。同时具有单色性好、宽调谐、高功率等优点。本文针对常用以及新型非线性光学晶体, 对其应用于中长波红外固体激光器的研究进展做了详细的总结。
中长波红外激光 固体激光器 非线性光学晶体 光学非线性频率变换技术 mid- and long-wave infrared laser solid-state laser nonlinear optical crystal optical nonlinear frequency conversion technology 
人工晶体学报
2020, 49(8): 1379
Author Affiliations
Abstract
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
We demonstrate a Fe:ZnSe laser gain-switched by a ZnGeP2 optical parametric oscillator (OPO) under the pulse repetition frequency of 1 kHz at room temperature. The 2.9 μm signal light of the OPO is employed as the pump for the Fe:ZnSe laser. The maximum output power of the Fe:ZnSe laser is 58 mW with the pulse duration of 2.7 ns under the incident pump power of 280 mW, corresponding to a peak pulse power of 21.5 kW and an optical-to-optical efficiency of 20.7%. The spectrum of the Fe:ZnSe laser has a range of 4030.2–4593.6 nm with a dip at 4187.1–4340.4 nm due to the absorption of CO2.
140.3070 Infrared and far-infrared lasers 140.3295 Laser beam characterization 
Chinese Optics Letters
2019, 17(8): 081404

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!