Author Affiliations
Abstract
1 National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
2 Department of Physics and Chemistry, PLA Army Academy of Special Operations, Guangzhou 510507, China
3 Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
We demonstrate a high power, Er:LuAG single-longitudinal-mode laser in an anti-misaligned resonator. Based on the Faraday effect, a 1.61 W single-longitudinal-mode (SLM) laser is obtained with the double corner-cube-retroreflector (CCR) structure, and the tunable wavelength is 1649.2–1650.3 nm. Additionally, we investigate the anti-misalignment characteristics when the CCR moves and rotates along the optical axis. Furthermore, by utilizing the Er:LuAG amplifier, the maximum 2.32 W single-longitudinal-mode laser at 1649.6 nm is achieved. The beam quality factors M2 of the 2.32 W Er:LuAG single-longitudinal-mode laser are 1.23 and 1.25 along the horizontal (x) and vertical (y) directions, respectively.
Er:LuAG single-longitudinal-mode laser Faraday effect MOPA system double corner-cube-retroreflector resonator 
Chinese Optics Letters
2024, 22(2): 021401
作者单位
摘要
哈尔滨工业大学可调谐(气体)激光技术国家级重点实验室,黑龙江 哈尔滨 150001

2 μm、中波红外(3~5 μm)和长波红外(8~12 μm)波段位于大气传输窗口和人眼安全范围内,涵盖众多气体原子和分子的共振吸收峰,在光谱学、遥感、通信、地球大气环境监测和光电对抗等领域具有重要的应用价值。目前,获取中长波红外波段激光的方法分为线性和非线性两种。首先分析了两种方法在中长波红外激光领域的国内外最新研究进展。之后详细地介绍了哈尔滨工业大学可调谐(气体)激光技术国家级重点实验室在非线性光学频率转换领域近三年取得的研究成果,包含Ho∶YAG调Q激光器及其泵浦的磷锗锌(ZnGeP2, ZGP)、硒镓钡(BaGa4Se7, BGSe)和硒化镉(CdSe)三种非线性晶体在中长波红外非线性光学频率转换器中的应用。相信随着2 μm超短脉冲激光器的发展,高功率超短脉冲中长波红外激光技术会成为未来的研究热点。

激光光学 Ho∶YAG 中波红外激光 长波红外激光 磷锗锌 硒镓钡 硒化镉 
中国激光
2022, 49(1): 0101002
作者单位
摘要
哈尔滨工业大学 可调谐激光技术国家级重点实验室,黑龙江 哈尔滨 150001
2 μm、中波红外3~5 μm及长波红外8~12 μm波段的激光处于大气传输窗口,在激光医疗、环境监测、激光雷达、化学遥感和红外对抗等领域有着非常广阔的应用前景。基于非线性频率转换技术,采用非线性光学晶体在实现中长波红外固体激光输出方面具有结构简单、宽调谐和高功率等技术优势。尤其是使用2 μm单掺Ho固体激光器泵浦ZnGeP2晶体,在3~5 μm和8~10 μm中长波红外输出中性能优异。在平均输出功率方面,目前可达到102 W@3~5 μm、12.6 W@8.2 μm以及3.5 W@9.8 μm的输出水平,光束质量M2均小于3,其中中波的光光转换效率可达60%。文中针对2 μm单掺Ho固体激光器及ZnGeP2晶体在中长波输出方面进行了总结。
中长波红外 非线性光学 固体激光器 2 μm 2 μm middle-long-wave infrared nonlinear optics solid laser 
红外与激光工程
2020, 49(12): 20201056
作者单位
摘要
1 中国电子科技集团公司第四十六研究所, 天津 300220
2 哈尔滨工业大学, 可调谐激光技术国家级重点实验室, 哈尔滨 150001
本文利用有籽晶的HPVGF法生长了尺寸为54 mm×25 mm的高质量CdSe单晶, 晶体为纤锌矿结构, (002)和(110)面的XRD摇摆曲线半高宽分别为54.4″和45.6″。使用红外显微镜和扫描电镜-能谱分析仪对晶体内部的夹杂相进行测试, 表明晶体内部存在小尺寸富Se夹杂相。CdSe晶片在2.5~20 μm范围内的透过率高于68%, 平均吸收系数为0.037 cm-1。制备出尺寸为10 mm×12 mm×50 mm且满足第Ⅱ类相位匹配条件的CdSe晶柱, 在重频1 kHz, 波长2.09 μm的Ho∶YAG调Q泵浦源激励下, 实现了中心波长为11.47 μm, 线宽为33.2 nm的激光输出, 最大输出功率为389 mW。
CdSe单晶 结晶质量 夹杂相 非线性光学晶体 光参量振荡器 CdSe single crystal crystal quality inclusion nonlinear optical crystals optical parametric oscillator 
人工晶体学报
2020, 49(8): 1517
作者单位
摘要
哈尔滨工业大学, 可调谐激光技术国家级重点实验室, 哈尔滨 150001
中波红外3~5 μm波段以及长波红外8~12 μm波段的激光处于大气传输窗口, 在激光成像、环境监测、激光雷达、激光医疗、化学遥感和红外对抗等领域有着非常广阔的应用前景。基于非线性光学晶体, 采用光学非线性频率变换技术在实现中长波红外固体激光输出方面具有明显的技术优势。该方法激光器结构简单, 且晶体本身并不参与能量交换, 因而没有量子亏损, 从而产热很少。同时具有单色性好、宽调谐、高功率等优点。本文针对常用以及新型非线性光学晶体, 对其应用于中长波红外固体激光器的研究进展做了详细的总结。
中长波红外激光 固体激光器 非线性光学晶体 光学非线性频率变换技术 mid- and long-wave infrared laser solid-state laser nonlinear optical crystal optical nonlinear frequency conversion technology 
人工晶体学报
2020, 49(8): 1379
Author Affiliations
Abstract
1 Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
2 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
3 School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
4 National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
The generation of mid-infrared pulsed lasers was achieved in a Ho3+:YAG laser pumped gain-switched Cr2+:CdSe laser system with the shortest pulse duration of 4.15 ns. With a pump pulse duration of 50 ns and pump power of 2.7 W, the gain-switched Cr2+:CdSe laser achieved over 10 times pulse narrowing, obtaining the maximum peak power of 5.7 kW. The optical-to-optical conversion efficiency was 3.7%, which could be further improved with better crystal surface polishing quality. The laser central wavelength was measured to be 2.65 μm with a bandwidth (FWHM) of 50 nm. In addition, the parameter optimization for suppressing the pulse tail was discussed, while the long cavity and high output transmissivity contributed to obtaining the single-peak pulses.
Cr2+:CdSe laser gain-switching pulse narrowing mid-infrared 
Chinese Optics Letters
2020, 18(3): 031403
Author Affiliations
Abstract
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
We demonstrate a Fe:ZnSe laser gain-switched by a ZnGeP2 optical parametric oscillator (OPO) under the pulse repetition frequency of 1 kHz at room temperature. The 2.9 μm signal light of the OPO is employed as the pump for the Fe:ZnSe laser. The maximum output power of the Fe:ZnSe laser is 58 mW with the pulse duration of 2.7 ns under the incident pump power of 280 mW, corresponding to a peak pulse power of 21.5 kW and an optical-to-optical efficiency of 20.7%. The spectrum of the Fe:ZnSe laser has a range of 4030.2–4593.6 nm with a dip at 4187.1–4340.4 nm due to the absorption of CO2.
140.3070 Infrared and far-infrared lasers 140.3295 Laser beam characterization 
Chinese Optics Letters
2019, 17(8): 081404
Author Affiliations
Abstract
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
We demonstrate a single-longitudinal-mode Ho3+:YVO4 unidirectional ring laser based on the acousto-optic effect, utilizing the features of the acousto-optical Q switch and half-wave plate to achieve unidirectional operation. The maximum power achieved in the single-longitudinal-mode at 2053.9 nm is 941 mW when the absorbed power is set as 4.4 W, yielding a nearly 50% slope efficiency. The M2 factor is 1.1. The results show that such a technique offers a potentially promising new method for achieving a high power and narrow linewidth 2 μm single-longitudinal-mode laser.
140.3560 Lasers, ring 140.3570 Lasers, single-mode 140.3580 Lasers, solid-state 
Chinese Optics Letters
2017, 15(3): 031402
Author Affiliations
Abstract
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080, China
We demonstrate a diode-pump Tm3+-doped all-fiber laser operating at 1908 nm based on a master oscillator power amplifier (MOPA) configuration. In our work, 152 W of laser output power is generated by a total incident pump power of 434 W at 790 nm, corresponding to the total optical efficiency of 35%. The laser wavelength is 1908.29 nm. To the best of our knowledge, it is the highest output power reached around 1908 nm with such a narrow linewidth of 0.18 nm based on a MOPA configuration.
140.3510 Lasers, fiber 060.2320 Fiber optics amplifiers and oscillators 060.2390 Fiber optics, infrared 
Chinese Optics Letters
2016, 14(6): 061403
Author Affiliations
Abstract
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
We report a monolithic Tm:YLF micro laser in this Letter. In order to improve the relaxation oscillation of the laser, both ends of the crystal are coated, making the Tm:YLF crystal itself a resonant cavity. The micro laser is pumped by a 792 nm laser diode operated in the continuous wave (CW) mode. We obtain maximum output powers of 7.78 and 10.4 W at the total incident power of 43.6 W with focus lenses of 37.5 and 40 mm, respectively, corresponding to the slope efficiencies of 25.6% and 40.0% and the optical–optical conversion efficiencies of 17.8% and 23.8%. It is clear that the amplitude of the relaxation oscillation is smaller and the beam quality is better with the focus length of 37.5 mm; however, the laser with the focus length of 40 mm produces a higher output power and a more stable wavelength centering at 1878.44 nm.
140.3480 Lasers, diode-pumped 140.3425 Laser stabilization 140.3430 Laser theory 
Chinese Optics Letters
2016, 14(6): 061401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!