Author Affiliations
Abstract
Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), University of Shanghai for Science and Technology, Shanghai 200093, China
We demonstrate an effective approach of mode suppression by simply using a tungsten probe to destroy the external neck surface of polymer microbottle resonators. The higher-order bottle modes with large axial orders, spatially located around the neck surface of the microresonator, will suffer large optical losses. Thus, excitation just with an ordinary free-space light beam will ensure direct generation of single fundamental bottle mode lasers. This method is with very low cost and convenient and can obtain high side-mode suppression factors. Our work demonstrated here may have promising applications such as in lasing and sensing devices.
140.3570 Lasers, single-mode 140.3945 Microcavities 160.5470 Polymers 
Chinese Optics Letters
2019, 17(12): 121401
Author Affiliations
Abstract
1 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2 School of Science, Qingdao University of Technology, Qingdao 266520, China
3 Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huaian 223003, China
A microcavity laser based on evanescent-wave-coupled gain is formed using a silica fiber with a diameter of 125 μm in a rhodamine 6G ethanol solution. When the fiber is sticking to the cuvette wall by capillary force, using the excitation of a 532 nm nanosecond pulsed laser, single-mode laser emission is observed. While increasing the distance between the fiber and the cuvette wall, the typical multi-peak whispering-gallery-mode (WGM) laser emission can also be demonstrated. On the other hand, while increasing the refractive index of the solution by mixing ethanol and ethylene glycol with different ratios as a solvent, the single-mode emission would evolve to multi-peak WGM laser emission controllably.
Microcavities Lasers, single-mode Integrated optics devices 
Photonics Research
2018, 6(4): 04000332
Author Affiliations
Abstract
1 State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China
2 College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
3 Guangdong Engineering Technology Research and Development Center of High-Performance Fiber Laser Techniques and Equipments, Zhuhai 519031, China
4 Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou 510640, China
5 Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China
A noise-sidebands-free and ultra-low relative intensity noise (RIN) 1.5 μm single-frequency fiber laser is demonstrated for the first time to our best knowledge. Utilizing a self-injection locking framework and a booster optical amplifier, the noise sidebands with relative amplitudes as high as 20 dB are completely suppressed. The RIN is remarkably reduced by more than 64 dB at the relaxation oscillation peak to retain below 150 dB/Hz in a frequency range from 75 kHz to 50 MHz, while the quantum noise limit is 152.9 dB/Hz. Furthermore, a laser linewidth narrower than 600 Hz, a polarization-extinction ratio of more than 23 dB, and an optical signal-to-noise ratio of more than 73 dB are acquired simultaneously. This noise-sidebands-free and ultra-low-RIN single-frequency fiber laser is highly competitive in advanced coherent light detection fields including coherent Doppler wind lidar, high-speed coherent optical communication, and precise absolute distance coherent measurement.
Lasers, fiber Lasers, single-mode Fluctuations, relaxations, and noise 
Photonics Research
2018, 6(4): 04000326
Xue-Feng Jia 1,2,3Li-Jun Wang 1,2,3,*Ning Zhuo 1,2,4Jin-Chuan Zhang 1,2[ ... ]Zhanguo Wang 1,2,3
Author Affiliations
Abstract
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
4 e-mail: zhuoning@semi.ac.cn
A multi-wavelength sampled Bragg grating (SBG) quantum cascade laser array operating between 7.32 and 7.85 μm is reported. The sampling grating structure, which can be analyzed as a conventional grating multiplied by a sampling function, is fabricated by holographic exposure combined with optical photolithography. The sampling grating period was varied from 8 to 32 μm, and different sampling order ( 1st, 2nd, and 3rd order) modes were achieved. We propose that higher-order modes with optimized duty cycles can be used to take full advantage of the gain curve and improve the wavelength coverage of the SBG array, which will be beneficial to many applications.
Semiconductor lasers, quantum cascade Laser arrays Lasers, single-mode Lasers, tunable 
Photonics Research
2018, 6(7): 07000721
Author Affiliations
Abstract
1 State Key Laboratory of Information Photonics & Optical Communications (Beijing University of Posts and Telecommunications), Beijing 100876, China
2 School of Instrument Science and Optoelectronic Engineering (Beihang University), Beijing 100191, China
3 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
We propose a high-Q photonic-electronic hybrid cavity for single-longitudinal-mode narrow-linewidth oscillation, where part of the cavity is in the radio frequency (RF) domain by a pair of frequency conversions. In the RF part, we can easily achieve MHz filtering and a large delay by inserting an electronic filter. In mathematics, we prove that the frequency conversion pair and electronic filter in between can be equivalent to a high-Q optical filter cascaded low-noise optical amplifier as a whole. Finally, the 20-dB bandwidth of oscillation is 1/20 of that of an optical local oscillator, and the maximum phase noise suppression can reach 65 dB.
140.3410 Laser resonators 230.0250 Optoelectronics 140.3570 Lasers, single-mode 
Chinese Optics Letters
2017, 15(1): 010010
Author Affiliations
Abstract
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
A scheme for measuring the intra-cavity round-trip loss of an all-solid-state single-frequency laser by inserting a type-I noncritical phase-matching nonlinear crystal introducing nonlinear loss into the resonator is presented. The intra-cavity round-trip loss is theoretically deduced by analyzing the dependence of the fundamental-wave (FW) and second-harmonic-wave (SHW) powers on the pump factor and the nonlinear conversion factor of the single-frequency laser and experimentally measuring them by recording different FW and SHW powers, which are decided by the temperature of the nonlinear crystal. The measured intra-cavity round-trip loss and pump factor are 4.84% and 6.91% W 1, respectively. The standard deviations of the measured intra-cavity round-trip loss and the pump factor are 0.26% and 0.07%, respectively. This scheme is very suitable for measuring the intra-cavity round-trip loss of a high-gain solid-state single-frequency laser.
140.3410 Laser resonators 140.3515 Lasers, frequency doubled 140.3570 Lasers, single-mode 140.3580 Lasers, solid-state 160.4330 Nonlinear optical materials 
Chinese Optics Letters
2017, 15(2): 021402
Author Affiliations
Abstract
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
We demonstrate a single-longitudinal-mode Ho3+:YVO4 unidirectional ring laser based on the acousto-optic effect, utilizing the features of the acousto-optical Q switch and half-wave plate to achieve unidirectional operation. The maximum power achieved in the single-longitudinal-mode at 2053.9 nm is 941 mW when the absorbed power is set as 4.4 W, yielding a nearly 50% slope efficiency. The M2 factor is 1.1. The results show that such a technique offers a potentially promising new method for achieving a high power and narrow linewidth 2 μm single-longitudinal-mode laser.
140.3560 Lasers, ring 140.3570 Lasers, single-mode 140.3580 Lasers, solid-state 
Chinese Optics Letters
2017, 15(3): 031402
Author Affiliations
Abstract
1 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China
2 University of Science and Technology of China, Hefei 230031, China
3 State Key Laboratory of Transducer Technology, Institute of Intelligent Machine, Chinese Academy of Science, Hefei 230031, China
Based on a single-channel laser self-mixing interferometer, we present a new simultaneous measurement of the vibration amplitude and the rotation angle of objects that both affect the power spectrum containing two peaks of the interferometer signals. The fitted results indicate that the curve of the peak frequency versus the vibration amplitude follows a linear distribution, and the curve of the difference of the two-peak power values versus the angle follows a Gaussian distribution. A vibration amplitude with an error less than 3.0% and a rotation angle with an error less than 11.7% are calculated from the fitted results.
120.3180 Interferometry 140.3490 Lasers, distributed-feedback 140.3570 Lasers, single-mode 
Chinese Optics Letters
2016, 14(2): 021201
Baole Lu 1,2,3,*Limei Yuan 1,2,3Xinyuan Qi 4Lei Hou 1,2,3[ ... ]Jintao Bai 1,2,3,4
Author Affiliations
Abstract
1 National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), Institute of Photonics and Photonics-Technology, Northwest University, Xi’an 710069, China
2 Shaanxi Engineering Technology Research Center for Solid State Lasers and Application, Xi’an 710069, China
3 Institute of Photonics and Photonics-Technology, Provincial Key Laboratory of Photoelectronic Technology, Northwest University, Xi’an 710069, China
4 School of Physics, Northwest University, Xi’an 710069, China
In this Letter, a single-frequency fiber laser using a molybdenum disulfide (MoS2) thin film as a saturable absorber is demonstrated. We use a short length of highly Yb-doped fiber as the gain medium and a fiber ferrule with MoS2 film adhered to it by index matching gel (IMG) that acts as the saturable absorber. The saturable absorber can be used to discriminate and select the single longitudinal modes. The maximum output power of the single-frequency fiber laser is 15.3 mW at a pump power of 130 mW and the slope efficiency is 15.3%. The optical signal-to-noise ratio and the laser linewidths are 60 dB and 5.89 kHz, respectively.
140.3510 Lasers, fiber 140.3570 Lasers, single-mode 160.3380 Laser materials 
Chinese Optics Letters
2016, 14(7): 071404
Author Affiliations
Abstract
1 Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Shanghai University, Shanghai 201800, China
Based on the modified ramp and fire technique, a novel injection seeding approach with real-time resonance tracking is successfully demonstrated in a single-frequency Nd:YAG pulsed laser. Appling a high-frequency sinusoidal modulation voltage to one piezo actuator and an adjustable DC voltage to another piezo actuator for active feedback, single-mode laser output with high-frequency stability is obtained, and the effect of the piezo hysteresis on the frequency stability can be eliminated for a laser diode pumped Q-switched Nd:YAG laser at a repetition rate of 400 Hz.
140.3425 Laser stabilization 140.3570 Lasers, single-mode 140.3538 Lasers, pulsed 
Chinese Optics Letters
2016, 14(7): 071401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!