Meng Wang 1,2Fan Wang 1,2Suya Feng 1,*Chunlei Yu 1,**[ ... ]Lili Hu 1,***
Author Affiliations
Abstract
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
A large-mode-area (LMA) ytterbium-doped photonic crystal fiber (PCF) with core NA of 0.034 and core diameter of 50 μm was made by the stack-and-draw technique. The core is formed by Yb3+/Al3+/F /P5+ co-doped silica glass containing 0.09 mol% Yb2O3 with an absorption coefficient at 976 nm up to 3.2 dB/m. The core glass with homogeneous distribution of Yb3+ ions and refractive index difference of 4 × 10 4 compared with pure silica was prepared by the sol-gel method and heat homogenization at 2000°C. Laser power amplification of this LMA PCF was studied using a seed source of 21 ps pulse duration and 48.7 MHz repetition rate at 1030 nm wavelength. With pump power of 520 W, a maximum 272 W (266 kW peak power) quasi-single-mode laser output with M2 of 2.2 was achieved in a 4.7 m fiber length bent at a diameter of 47 cm with slope efficiency of 52%, and no obvious mode instability, stimulated Raman scattering, or thermal damage on the end facet of the fiber were observed.
140.3538 Lasers, pulsed 140.3615 Lasers, ytterbium 140.3510 Lasers, fiber 160.5690 Rare-earth-doped materials 
Chinese Optics Letters
2019, 17(7): 071401
Author Affiliations
Abstract
1 Electronics Research Group, Institute of Power Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
2 Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Kingdom of Saudi Arabia
3 Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
A saturable absorber is commonly employed to generate an ultrashort laser with a mode-locking scheme. In an erbium-doped fiber laser system, the laser regimes of either 1530 or 1550 nm wavelength are procured based on the absorption profile of the erbium-doped fiber. The absorption of the erbium-doped fiber is designed to emit at both wavelengths by controlling the net gain of the laser cavity. Subsequently, simultaneous erbium-doped fiber laser emission is attained at 1533.5 and 1555.1 nm with the pulse duration of 910 and 850 fs, respectively. Therefore, this work maximizes the output portfolios of a mode-locking fiber laser for dual-wavelength ultrashort pulses emission.
140.3538 Lasers, pulsed 190.7110 Ultrafast nonlinear optics 320.7090 Ultrafast lasers 
Chinese Optics Letters
2019, 17(5): 051401
Author Affiliations
Abstract
1 Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
A highly efficient laser system output at the H-β Fraunhofer line of 486.1 nm has been demonstrated. A high pulse energy single-frequency hybrid 1064 nm master oscillator power amplifier was frequency-tripled to achieve 355 nm laser pulses, which acted as the pump source of the beta barium borate nanosecond pulse optical parametric oscillator. With pump energy of 190 mJ, the laser system generated a maximum output of 62 mJ blue laser pulses at 486.1 nm, corresponding to conversion efficiency of 32.6%. The laser spectrum width was measured to be around 0.1 nm, being in conformity with the spectrum width of the solar Fraunhofer line.
190.4970 Parametric oscillators and amplifiers 190.2620 Harmonic generation and mixing 140.3538 Lasers, pulsed 
Chinese Optics Letters
2018, 16(8): 081901
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
To reveal the physical mechanism of laser ablation and establish the prediction model for figuring the surface of fused silica, a multi-physical transient numerical model coupled with heat transfer and fluid flow was developed under pulsed CO2 laser irradiation. The model employed various heat transfer and hydrodynamic boundary and thermomechanical properties for assisting the understanding of the contributions of Marangoni convention, gravitational force, vaporization recoil pressure, and capillary force in the process of laser ablation and better prediction of laser processing. Simulation results indicated that the vaporization recoil pressure dominated the formation of the final ablation profile. The ablation depth increased exponentially with pulse duration and linearly with laser energy after homogenous evaporation. The model was validated by experimental data of pulse CO2 laser ablation of fused silica. To further investigate laser beam figuring, local ablation by varying the overlap rate and laser energy was conducted, achieving down to 4 nm homogenous ablation depth.
140.3390 Laser materials processing 140.3470 Lasers, carbon dioxide 220.5450 Polishing 140.3538 Lasers, pulsed 
Chinese Optics Letters
2018, 16(4): 041401
Author Affiliations
Abstract
1 School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2 Welding Engineering and Laser Processing Centre, Cranfield University, Bedford MK43 0AL, United Kingdom
Dissimilar metal joining of magnesium to aluminum was investigated using the latest generation nanosecond pulsed fiber laser. The tensile shear test shows that the average tensile shear strength of a joint was 86 MPa, which was 75% of the aluminum substrate. The weld interface exhibited a mixture phase (Mg solid solution and Mg17Al12) that improves the strength and toughness of the joint. A thin Mg–Al intermetallic compound layer was formed on both sides of the weld seam toward the Al side. Fracture occurred toward the Al substrate side rather than the Mg–Al interface, indicating a high joining strength at the weld interface.
140.3390 Laser materials processing 140.7090 Ultrafast lasers 140.3538 Lasers, pulsed 
Chinese Optics Letters
2018, 16(6): 061401
Man Hu 1,2Zhao Quan 1Jianhua Wang 3Kai Liu 1[ ... ]Jun Zhou 1,***
Author Affiliations
Abstract
1 Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Space and Command, Academy of Equipment, Beijing 101416, China
The stimulated Brillouin scattering (SBS) threshold affected by repetition rate and pulse duration in a single-frequency nanosecond pulsed fiber amplifier is studied. The experimental results demonstrate that the SBS threshold can be improved either by reducing the repetition rate or by narrowing the pulse duration; however, the average power may be limited in some cases. Otherwise, two evaluation methods for the SBS threshold in the fiber amplifier are compared and discussed, aiming to obtain a more accurate description for the SBS threshold in our single-frequency amplifier system.
140.3538 Lasers, pulsed 140.3280 Laser amplifiers 060.4370 Nonlinear optics, fibers 190.5890 Scattering, stimulated 
Chinese Optics Letters
2016, 14(3): 031403
Author Affiliations
Abstract
1 Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Shanghai University, Shanghai 201800, China
Based on the modified ramp and fire technique, a novel injection seeding approach with real-time resonance tracking is successfully demonstrated in a single-frequency Nd:YAG pulsed laser. Appling a high-frequency sinusoidal modulation voltage to one piezo actuator and an adjustable DC voltage to another piezo actuator for active feedback, single-mode laser output with high-frequency stability is obtained, and the effect of the piezo hysteresis on the frequency stability can be eliminated for a laser diode pumped Q-switched Nd:YAG laser at a repetition rate of 400 Hz.
140.3425 Laser stabilization 140.3570 Lasers, single-mode 140.3538 Lasers, pulsed 
Chinese Optics Letters
2016, 14(7): 071401
Ziwei Wang 1,2Qiurui Li 1Zhaokun Wang 1,2峰 邹 1,2[ ... ]Jun Zhou 1,*
Author Affiliations
Abstract
1 Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100039, China
3 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
We report on the amplification of high-average-power and high-efficiency picosecond pulses in a self-made very-large-mode-area Yb-doped photonic crystal fiber (PCF). The PCF with a core diameter of 105 μm and a core numerical aperture of 0.05 is prepared by the sol-gel method combined with the powder sintering technique. The fiber amplification system produces the highest average power of 255 W at a 10 MHz repetition rate with a 21 ps pulse duration corresponding to a peak power of 1.2 MW. This result exemplifies the high-average-power and high-peak-power potential of this specifically designed fiber.
140.3538 Lasers, pulsed 140.3615 Lasers, ytterbium 140.3280 Laser amplifiers 140.3510 Lasers, fiber 
Chinese Optics Letters
2016, 14(8): 081401
Author Affiliations
Abstract
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
We report a cladding-pumped actively Q-switched ring Tm-doped fiber laser (TDFL). This laser is Q-switched by a free space acousto-optic modulator. A pulse energy up to 150 μJ with a pulse width of 207 ns at a repetition rate of 100 Hz is achieved for a cavity optical length of 6.68 m. The pulse amplitude’s stability at this repetition rate is better than 95%. To the best of our knowledge, this is the first free space structure Q-switched ring TDFL report.
140.3480 Lasers, diode-pumped 140.3510 Lasers, fiber 140.3538 Lasers, pulsed 140.3540 Lasers, Q-switched 
Chinese Optics Letters
2016, 14(9): 091401
Author Affiliations
Abstract
1 School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2 Laser Fusion Research Center, Chinese Academy of Engineering Physics, Mianyang 621900, China
Intensive electromagnetic pulses (EMPs) can be generated from interaction of the ultra-intense lasers and solid targets in inertial confinement fusion (ICF), which will detrimentally affect the data acquisition from some electric components. A diagnostic system for EMP measurement inside and outside the ShenGuang-III facility is designed and fabricated in this study. The experimental results indicate that the peak magnitude of EMP reaches up to 3210.7 kV/m and 6.02 T. The received signals depend most on the antenna and target types. The half-hohlraum generates a more intensive EMP radiation than that from the other targets, and the large planar and medium discone capture much stronger signals than the other antennas. In addition, the mechanisms of EMP generation from different targets are discussed. The resulting conclusion are expected to provide the experimental basis for further EMP shielding design.
140.3320 Laser cooling 140.3538 Lasers, pulsed 350.5610 Radiation 
Chinese Optics Letters
2016, 14(10): 101402

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!