殳博王 1,2,3张雨秋 1,**常洪祥 1,2,3常琦 1,2,3[ ... ]周朴 1,*
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
3 国防科技大学高能激光技术湖南省重点实验室,湖南 长沙 410073
以19路、127路和919路激光相干阵列为模型,通过倾斜波前调控技术对阵列光场的子阵元施加倾斜相位控制,对倾斜可控阵列光场的大角度二维扫描特性进行了理论和实验研究。结果表明,所提出的方法可实现大视场范围内任意位置的单点扫描,同时得到能量分布均匀的二维连续扫描路径,实现特殊光场图案定制。此外,该方法具有扫描范围不受限制、扫描模式准连续以及衍射效率高等特点,在提升输出功率和扫描精度等方面具有优势。
激光光学 激光阵列 相干合成 倾斜调控 二维扫描 光场定制 
中国激光
2024, 51(2): 0205001
田永昊 1,2白芳 1麻云凤 1,2,*程旺 1[ ... ]樊仲维 1
作者单位
摘要
1 中国科学院空天信息创新研究院,北京 100094
2 中国科学院大学光电学院,北京 100049
提出了一种千瓦级半导体激光器叠阵中单巴条的激光功率和光谱参量的集成测试技术。利用自主研发的光阑将激光器叠阵中任意单巴条的光束与其他巴条的光束分离,并利用积分球对分离出的单巴条光束的功率和光谱参量进行集成测试,再与整个激光器叠阵的功率和光谱参量的集成测试结果进行比对。实验结果表明:利用自主研发的光阑实现了将1 kW激光器叠阵中任意单巴条光束与其他巴条光束的分离,光阑对单巴条光束的透过率为98%;结合积分球集成测试系统实现了激光器叠阵中所有巴条的单独测试,解决了激光器叠阵中单巴条测试需要拆封的传统问题。此外该系统实现了对整个激光器叠阵的快速扫描测试,可直观反映激光器叠阵中每个巴条的情况。
测量 二极管激光器阵列 激光光束特性 积分球 
激光与光电子学进展
2021, 58(23): 2312004
王栎皓 1,2,3付登源 1,2,3赵俊元 1,2,3赵松庆 4,5[ ... ]杨晋玲 1,2,3,**
作者单位
摘要
1 中国科学院半导体研究所半导体集成技术工程研究中心,北京 100083
2 中国科学院大学材料科学与光电工程中心,北京 100049
3 传感器技术国家重点实验室,上海 200050
4 中国空空导弹研究院,河南 洛阳 471009
5 航空制导武器航空重点实验室,河南 洛阳 471009
针对半实物仿真系统的需求,基于系统级封装技术提出了一款由垂直腔面发射激光器(VCSEL)激光器阵列、激光器驱动芯片、电源芯片等组成的微系统,并介绍了基于微机电系统微纳加工技术的VCSEL激光器阵列的制造工艺流程。该激光器的封装方法具有集成度高、可靠性高等特点,相比于其他驱动及封装方法大大提高了驱动效率和空间利用率,因此在光学成像、通信、互联等领域具有广泛应用前景,为实现半实物仿真中激光成像发生器奠定了基础。
激光光学 激光器阵列 垂直腔面发射激光器 系统级封装 微系统 微机电系统 微纳加工 
激光与光电子学进展
2021, 58(21): 2114011
Author Affiliations
Abstract
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Coherent beam combining of 60 fiber lasers by using the stochastic parallel gradient descent algorithm has been demonstrated. The functions of pinhole(s) on the power distributions in the far-field have been systematically simulated on both in-phase and out-of-phase modes. Only one photoelectric detector was used to detect the combined power in the far-field central lobe of the in-phase mode state. When the phase controller was in a closed loop, the contrast of the far-field intensity pattern was as high as ~97% with residual phase error of λ/30, and ~34.7% of the total power was contained in the central lobe.
coherent beam combining fiber laser laser arrays 
Chinese Optics Letters
2020, 18(10): 101403
Author Affiliations
Abstract
1 School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
2 Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
We study modulation properties of two-element phased-array semiconductor lasers that can be described by coupled mode theory. We consider four different waveguide structures and modulate the array either in phase or out of phase within the phase-locked regions, guided by stability diagrams obtained from direct numerical simulations. Specifically, we find that out-of-phase modulation allows for bandwidth enhancement if the waveguide structure is properly chosen; for example, for a combination of index antiguiding and gain-guiding, the achievable modulation bandwidth in the case of out-of-phase modulation could be much higher than the one when they are modulated in phase. Proper array design of the coupling, controllable in terms of the laser separation and the frequency offset between the two lasers, is shown to be beneficial to slightly improve the bandwidth but not the resonance frequency, while the inclusion of the frequency offset leads to the appearance of double peak response curves. For comparison, we explore the case of modulating only one element of the phased array and find that double peak response curves are found. To improve the resonance frequency and the modulation bandwidth, we introduce simultaneous external injection into the phased array and modulate the phased array or its master light within the injection locking region. We observe a significant improvement of the modulation properties, and in some cases, by modulating the amplitude of the master light before injection, the resulting 3 dB bandwidths could be enhanced up to 160 GHz. Such a record bandwidth for phased-array modulation could pave the way for various applications, notably optical communications that require high-speed integrated photonic devices.
Modulation Semiconductor lasers Laser arrays Waveguides, slab 
Photonics Research
2018, 6(9): 09000908
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
We proposed a novel wavelength-spread compression technique for spectral beam combining of a diode laser array. A reflector, which is parallel to the grating, is introduced to achieve a double pass with a single grating. This facilitated the reduction of the wavelength spread by half and doubled the number of combined elements in the gain range of the diode laser. We achieved a power of 26.1 W under continuous wave operation using a 19 element single bar with a wavelength spread of 6.3 nm, which is nearly half of the original wavelength spread of 14.2 nm, demonstrating the double-compressed spectrum capability of this structure. The spectral beam combining efficiency was 63.7%. The grating efficiency and reflector reflectance were both over 95%; hence, the efficiency loss of the double-pass grating with a reflector is acceptable. In contrast to double-grating methods, the proposed method introduces a reflector that efficiently uses the single grating and shows significant potential for a more efficient spectral beam combining of diode laser arrays.
140.2010 Diode laser arrays 140.3290 Laser arrays 140.3298 Laser beam combining 
Chinese Optics Letters
2018, 16(7): 071402
Xue-Feng Jia 1,2,3Li-Jun Wang 1,2,3,*Ning Zhuo 1,2,4Jin-Chuan Zhang 1,2[ ... ]Zhanguo Wang 1,2,3
Author Affiliations
Abstract
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
4 e-mail: zhuoning@semi.ac.cn
A multi-wavelength sampled Bragg grating (SBG) quantum cascade laser array operating between 7.32 and 7.85 μm is reported. The sampling grating structure, which can be analyzed as a conventional grating multiplied by a sampling function, is fabricated by holographic exposure combined with optical photolithography. The sampling grating period was varied from 8 to 32 μm, and different sampling order ( 1st, 2nd, and 3rd order) modes were achieved. We propose that higher-order modes with optimized duty cycles can be used to take full advantage of the gain curve and improve the wavelength coverage of the SBG array, which will be beneficial to many applications.
Semiconductor lasers, quantum cascade Laser arrays Lasers, single-mode Lasers, tunable 
Photonics Research
2018, 6(7): 07000721
Author Affiliations
Abstract
1 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Microwave-Photonics Technology Laboratory, Nanjing University, Nanjing 210093, China
2 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
We review the recent work of distributed-feedback (DFB) multi-wavelength semiconductor laser arrays (MWLAs) based on the reconstruction equivalent chirp (REC) technique. The experimental results show that the proposed MWLA has very high wavelength precision (<±0.1 nm), while the fabrication cost is low. Only one step of holographic exposure and another step of photolithography are required for grating fabrication. The packaging technique for a high-bandwidth analog DFB laser and laser array was developed. A directly modulated MWLA transmitter module was achieved. In addition, an improved MWLA with an integrated reflector was proposed and successfully applied in a radio-over-fiber system.
140.2010 Diode laser arrays 050.2770 Gratings 
Chinese Optics Letters
2017, 15(1): 010005
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
We propose a nonparallel double-grating structure in a spectral-beam combining technique, where two gratings are placed nonparallel satisfying the Littrow mount in the focal region of the convergent lens. The most attractive advantage of this approach is that it will compress the spectral span into half of its original spectrum, which means the number of combined elements can be doubled in the gain range of diode lasers. Experimental results demonstrate that the CW output power of the combined beam is 30.9 W with a spectral span of 7.0 nm, compared with its original spectrum span of 13.6 nm, and the spectral beam combining efficiency is 70.5%. In consideration that a single grating could have a high efficiency of >97% in a bandwidth of over ten nanometers, the efficiency loss of the grating pair should be less than 6%, which is acceptable for most applications, so this method of using double gratings should be highly interesting for practical applications when a nearly doubled number of diode lasers could be combined into one single laser compared with the previous single-grating methods.
140.2010 Diode laser arrays 140.3290 Laser arrays 140.3298 Laser beam combining 050.1950 Diffraction gratings 
Chinese Optics Letters
2017, 15(9): 091403
作者单位
摘要
长春理工大学 高功率半导体激光国家重点实验室, 长春 130022
高功率半导体激光器阵列已经广泛应用于许多领域。Smile效应是由高功率半导体激光器阵列(巴条)本身在封装过程中与热沉之间热膨胀系数(CTE)失配导致的热应力造成的。各个发光点在横向上不在一条直线上,从而导致半导体激光阵列整体发光弯曲。较大的Smile值可以引起光束质量降低、造成光束耦合和光束整形困难。为了降低热串扰实现巴条温度均匀化,我们在传统CS热沉的基础上,引入高热导率铜基石墨烯(GCF)与孔状结构,对CS被动式制冷半导体巴条热应力分布不均导致的Smile效应进行了数值模拟与仿真分析。在热功率为60 W的条件下,一方面,当仅有GCF材料,并且其长度为8 mm时,温差从最初的7.94 ℃降低到3.65 ℃;另一方面,在合理的温升范围内,当GCF的长度为8 mm时,结合增加热沉热阻的孔状结构时,温差进一步降低到3.18 ℃。
半导体激光阵列 Smile效应 温度均匀化 热沉 semiconductor laser arrays smile effect temperature uniformity heat sink 
强激光与粒子束
2017, 29(11): 111002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!