侯俊峰 1,2,*孙英姿 1林佳本 1,2张洋 1[ ... ]张志勇 1,2
作者单位
摘要
1 中国科学院国家天文台,北京 100101
2 中国科学院大学 天文与空间科学学院,北京 100049
为了降低向列液晶调制器的相位延迟漂移影响以提高可调谐液晶双折射滤光器的透过轮廓和谱线定位精度,提出了一种基于傅里叶分析的非线性拟合原位定标方法。该方法从偏振干涉理论出发,利用傅里叶分析获得双折射滤光器每一级的相位偏移量;然后建立相位偏移量与向列液晶调制器相位延迟漂移量的函数模型,最终采用非线性拟合法获得相位延迟漂移量,从而实现双折射滤光器的原位定标。误差分析和实验研究表明,该方法对滤光器的晶体参数以及前置滤光片的误差依赖较弱;测量方法简单便捷,一次测量即可完成定标;相位延迟漂移量的定标精度优于5°,对应双折射滤光器(带宽0.01 nm)的线心漂移量小于0.000 3 nm。
太阳望远镜 双折射滤光器 向列液晶调制器 相位延迟 原位定标 Solar telescope Birefringent filter LCVR Retardation In-situ calibration 
光子学报
2023, 52(5): 0552208
黄威 1,2,3林佳本 1,2,3,*侯俊峰 1,2,3张洋 1,2,3[ ... ]王东光 1,2
作者单位
摘要
1 中国科学院 国家天文台,北京 100101
2 中国科学院 中国科学院太阳活动重点实验室,北京 100101
3 中国科学院大学,北京 100049
液晶可变相位延迟器(LCVR)由于其调制速度快、重量轻、无运动部件等特点成为空间光学仪器中新的研究热点。然而,LCVR中的液晶属于高分子材料,其空间适应性有待考核验证。由于地面环境模拟试验无法同时还原太空中的所有参数,因此亟需研制一台符合卫星搭载要求的LCVR空间特性试验仪,来研究液晶器件在真实星载环境下的电光性能(相位延迟-电压曲线稳定性)。本文分析了LCVR延迟测试系统的稳定性,并给出LCVR相位延迟-电压曲线的电子学测量方案。首先使用“零点”标定法设计了高稳定度的LCVR驱动;然后使用变频误差控制法,实现了LCVR的高精度恒温控制。其中LCVR驱动稳定度达到99.3%,LCVR恒温精度最高达到(35±0.1)℃。在此基础上,对整机进行了力、热和电磁兼容试验,结果表明待测LCVR和电子学系统功能稳定,成功完成了LCVR这一首飞器件的空间光电测试系统在我国的首次研制,对液晶的空间化应用有着重要意义。
液晶器件 液晶可变相位延迟器 偏振调制 恒温控制 liquid crystal device LCVR polarization modulation constant temperature control 
液晶与显示
2022, 37(7): 849
王刚 1,1,2侯俊峰 1,1,2林佳本 1,2王东光 1,2张鑫伟 1,1,2
作者单位
摘要
1 中国科学院大学, 北京 100049
2 中国科学院 中国科学院太阳活动重点实验室, 北京 100101
相位延迟-电压曲线的精确标定是向列型液晶可变相位延迟器能否实现高精度偏振测量的关键。为了提高液晶相位延迟的测量精度, 建立了一套精确高效的自动测量系统。首先, 提出了一种新的测量方法, 该方法综合了光强法、索累补偿器法以及等偏离测量技术, 可以解决现有方法测量精度低或效率低的问题。在此基础上建立了测量系统, 并利用Labview技术实现了系统的自动化测量, 进一步缩短了测量时间。最后, 对系统的测量误差、重复精度以及工作效率进行了实验验证。实验结果表明, 系统延迟测量误差小于0.057 5%λ, 重复精度小于0.019 7%λ, 可在30 min内完成100个延迟采样点的自动化测量。该系统适用于可见光范围内液晶可变延迟器相位延迟-电压曲线的精确标定。
液晶相位可变延迟器 相位延迟-电压曲线 精确自动化标定 索累补偿器法 等偏离技术 liquid crystal phase variable retarder phase delay-voltage curve precise automated calibration compensator method equivalent deviation technology 
光学 精密工程
2020, 28(4): 827
作者单位
摘要
1 中国科学院国家天文台太阳活动重点实验室, 北京 100101
2 中国科学院大学天文与空间科学学院, 北京 100049
地平式天文望远镜在跟踪观测过程中,因方位轴与地球自转轴不重合及库徳光路中的折轴反射镜在望远镜跟踪过程中相对转动,会引入物方及像方视场旋转。传统的消旋K镜可以消除视场旋转,但会带来较大的仪器偏振,不利于望远镜实现高精度偏振测量。无偏消旋镜由5块反射镜组成,通过优化设计可以保证在消除像旋的同时减小仪器偏振,但其不规则的结构设计使装调过程面临新的挑战。针对无偏消旋镜提出双光路自准直装调方案,基于MATLAB仿真分析了镜面误差及光轴偏差对装调结果的影响,并对无偏消旋镜进行实验室装调及偏振检测。结果表明:无偏消旋镜经装调后倾斜误差可控制在15 arcsec以内,其仪器偏振明显低于传统K镜。
测量 偏振测量 无偏消旋镜 装调方案 双光路 天文望远镜 
中国激光
2020, 47(6): 0604005
作者单位
摘要
1 中国科学院国家天文台太阳活动重点实验室, 北京 100012
2 中国科学院大学, 北京 100049
3 美国国家光学天文台, 亚利桑那 图森 85726
大型光学天文望远镜中存在由于不同坐标系转换造成的物方视场旋转和望远镜内部光路中折轴平面反射镜之间的相对转动造成的像方视场旋转。为了提高空间分辨率和获得稳定的图像,需要对视场旋转进行补偿(消旋)。采用K 镜作为消旋器件,并通过矩阵方法分析其消旋原理及消旋条件,由此把K 镜分为两种结构:对称式和非对称式。与棱镜类似,K 镜对系统光轴和成像有影响。在设计时,K 镜的口径、体积和角度需要考虑加工装调和望远镜整体光路的要求,在满足要求后,可进行一定的优化。用Zemax 可实现对K 镜的光学设计,最后用空间几何关系来计算装调误差,并利用MATLAB 和Zemax得到误差分析结果。
光学设计 K 镜 矩阵分析 优化条件 装调误差 
中国激光
2016, 43(3): 0316002
作者单位
摘要
中国科学院 国家天文台 中国科学院太阳活动重点实验室, 北京 100012
由于传统的斯托克斯椭偏仪定标方法中入射光源的偏振效应、定标单元中光学元件的制造与装调误差都会降低仪器矩阵的定标精度, 从而影响偏振态的测量精度, 本文提出了基于非线性最小二乘拟合算法的仪器矩阵偏振定标方法。该方法将描述定标单元的参量和仪器矩阵的所有矩阵元一起作为未知参数, 根据偏振光学传输理论建立探测光强与未知参数的函数关系式; 然后,基于非线性最小二乘拟合方法拟合实际探测光强随定标单元方位角的变化曲线, 进而得到斯托克斯椭偏仪的仪器矩阵。实验中使用该方法和传统方法在500~700 nm波段分别定标了KD*P型斯托克斯椭偏仪的仪器矩阵。结果显示, 新方法在500~600 nm波段获得的斯托克斯参数的总均方根(RMS)偏差为1.6%, 较传统定标方法提高约0.5%; 波长大于600 nm时, 由于系统信噪比降低使得新方法的测量精度降为2.4%, 但仍然远高于传统方法的测量精度。结果表明, 提出的方法简单易行, 适用于各种斯托克斯椭偏仪的仪器矩阵定标。
太阳望远镜 斯托克斯椭偏仪 偏振定标 非线性最小二乘拟合 仪器矩阵 solar telescope Stokes ellipsometer polarization calibration nonlinear least-square fitting instrument matrix 
光学 精密工程
2013, 21(8): 1915
作者单位
摘要
1 中国科学院国家天文台太阳活动重点实验室, 北京 100012
2 中国科学院大学, 北京 100049
提出了一种利用非线性最小二乘拟合法自校准测量偏振元件Mueller矩阵参数的新方法。通过测量放入待测样品前后输出偏振态的Stokes参数,建立起由测得的输出偏振态参数、系统未知参数与被测样品的Mueller矩阵之间的函数关系式,使用多参数的非线性最小二乘拟合求解得到待测样品的Mueller矩阵。建立了一套基于铁电液晶波片、旋转波片及偏振片的光谱型Mueller矩阵椭偏仪,并通过自编的Labview自动控制软件实现了智能化测量。误差分析和实际测量结果表明,在600~900 nm波长范围内,Mueller矩阵元参数的测量精度在0.01以内,重复性精度达到0.005。该测量系统无需对系统进行复杂的定标,简化了测量过程,实现了Mueller矩阵元参数的自校准测量。
测量 Mueller矩阵 非线性最小二乘拟合 偏振元件 铁电液晶 旋转波片 
中国激光
2013, 40(4): 0408004
作者单位
摘要
中国科学院国家天文台太阳活动重点实验室, 北京 100012
在旋转补偿器椭偏仪(RCE)的基础上,提出了一种自校准的波片相位延迟测量方法。该方法将补偿器的相位延迟作为未知参数,根据Mueller矩阵理论建立了4个非线性方程,求解得到待测波片的相位延迟;实现了补偿器相位延迟的自校准,消除了其定标不准确带来的系统误差,尤其适用于多个波长的波片延迟测量。在此基础上建立了一套波片延迟测量系统,并分析和模拟了各种主要的误差源对系统测量精度的影响。结果表明,对于任意延迟的波片,测量系统最大的系统误差和随机误差分别为0.036°和0.040°。此外,使用该方法分别测量了λ/4波片、λ/2波片、127°波片和空气(不放入任何样品)在波长517.3、525.0、532.4 nm处的相位延迟以评估测量系统的性能,其中空气的相位延迟代表测量系统的测量精度,与模拟结果基本一致。
测量 相位延迟 自校准 波片 二向色性 
中国激光
2012, 39(4): 0408007
作者单位
摘要
中国科学院国家天文台中国科学院太阳活动重点实验室, 北京 100012
提出一种精密测量波片相位延迟的新方法。将待测波片置于起偏器和检偏器之间,通过步进电机控制波片匀速旋转,基于最小二乘法拟合出射光强随波片方位角变化的曲线,进而得到波片延迟。根据上述原理,建立了一套波片延迟测量系统,并分析了系统的稳定性、可测量的延迟范围、接收器件的非线性效应、系统误差源这4个影响测量精度的主要方面。结果表明,该系统不适于测量λ/2波片;检偏器方位角在±38°范围内,采样间隔小于10°时系统较稳定;接收器件的二次非线性效应产生较大的系统误差;波片初始角度误差和检偏器方位角误差对该系统的延迟测量影响较大;除0\O,180°,360°附近区域外,系统的检测重复偏差在0.1°以内;该检测精度在整个可见光区域基本保持不变。
测量 相位延迟 最小二乘法 波片 
光学学报
2011, 31(8): 0812001
作者单位
摘要
1 中国科学院 国家天文台 怀柔太阳观测站,北京 100012
2 中国科学院 研究生院,北京 100049
由于双折射滤光器型太阳磁场望远镜中滤光器的研制质量直接影响透过带,进而影响太阳磁场的测量,本文对影响双折射滤光器透过带漂移的各种误差因素进行了分析。通过计算机编程,完全模拟了光线轨迹,精确分析了多种误差项对双折射滤光器透过带的影响。给出了引起透过带漂移、展宽、极大值和极小值变化的主要误差项。分析表明,入射角、晶体光轴倾角误差、晶体厚度误差和1/4波片光轴方位角误差影响透过带漂移;只有晶体光轴方位角误差影响透过带宽,当误差为2°时,透过带展宽了0.078%;宽视场1/2波片光轴方位角误差对极大值的影响最明显,当误差为2°时,极大值减小了0.487%;晶体光轴方位角误差、宽视场1/2波片延迟误差和1/4波片光轴方位角误差对极小值都有不同程度的影响。
太阳观测 双折射滤光器 误差分析 光线追迹方法 solar observation birefringent filter error analysis ray tracing method 
光学 精密工程
2010, 18(1): 52

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!