作者单位
摘要
1 中国工程物理研究院激光聚变研究中心,四川 绵阳 621900
2 中国工程物理研究院研究生院,北京 100088
3 华南理工大学物理与光电学院,广东 广州 510640
在光通信、光学传感、精密测量、量子技术及原子物理等多个领域的需求牵引下,单纵模连续波激光器的输出稳定性和噪声特性需要进一步提升。本文针对单纵模激光器噪声中对输出功率稳定性起主要影响作用的强度噪声进行了讨论,阐述了其主要来源和产生机理,在此基础上对比分析了国内外当前主要的单纵模激光器强度噪声抑制技术和方法。为了提升大型激光装置前端系统中单纵模光纤激光器的输出稳定性,开展了基于半导体光放大器的强度噪声抑制技术研究,实现了强度噪声的有效抑制。
激光器 单纵模激光器 强度噪声 噪声抑制 
激光与光电子学进展
2023, 60(23): 2300006
作者单位
摘要
中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
精密高效的脉冲波形调控是大型激光装置满足惯性约束聚变实验需求的重要技术之一。脉冲波形生成原理是通过编辑任意波形发生器中每个子脉冲的电压值,经电光调制器转换为光脉冲强度形成任意形状的激光脉冲轮廓。在电光转换过程中,各子束响应过程并非线性且子束间存在个性差异。为实现此条件下精密高效的脉冲波形调控,制定并开发了基于闭环迭代思路的激光脉冲波形快速调控方法。实验结果表明,算法可在10 min内实现任意脉冲波形整形,并具备23∶1高对比度脉冲波形调控能力,调控精度均优于10% (rms),满足常规物理实验运行条件下对激光参数调控的精度和效率需求。
高功率激光装置 脉冲整形 迭代算法 high-power laser facility pulse shaping iterative algorithm 
强激光与粒子束
2023, 35(8): 082001
作者单位
摘要
中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
强激光与粒子束
2023, 35(2): 029901
戴亚平 1,2粟敬钦 1,2魏晓峰 1,*吴玉迟 1,2[ ... ]董军 1,2
作者单位
摘要
1 中山光子科学中心,广东 中山 528400
2 中国工程物理研究院激光聚变研究中心,四川 绵阳 621900
超短超强脉冲激光是目前世界上在实验室内产生超高能量密度、超强电磁场和超快时间尺度的综合性极端物理条件的重要手段。在对超短超强脉冲激光发展现状和趋势分析的基础上,针对高能量密度物理等前沿基础科学实验研究多样化的需求,提出研制不同脉冲宽度、三种脉冲激光(两束输出功率为10 PW的飞秒激光、单束输出功率为1 PW@1 Hz的飞秒激光、单束千焦耳皮秒激光和单束万焦耳纳秒激光)协同输出至4个物理实验站形成不同工作模式,实现多种加载-诊断物理实验功能的星光超强激光装置(XG-ELF)的设想。对XG-ELF装置的物理实验设想和主要设计结果进行介绍。建成后的XG-ELF装置将为我国高能量密度物理前沿基础领域中的研究提供先进的研究平台。
激光器 极端条件 高能量密度物理 超短超强激光 光参量啁啾脉冲放大 
光学学报
2022, 42(17): 1714001
宗兆玉 1,2赵军普 1李森 1梁樾 1[ ... ]郑万国 1,*
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
2 中国工程物理研究院 研究生院,北京 100088
提出了基于激光脉冲波形精密调控和能量稳定性控制的双回路同步闭环设计方法,进而在任意波形发生器与预放大系统输出处建立脉冲波形闭环控制系统,在保偏大模场光纤放大器和再生放大器间建立能量稳定性闭环系统。依托大口径高通量实验平台,实现了激光脉冲波形的快速高稳定精密调控,脉冲波形闭环精度优于2%(RMS),脉冲能量稳定性优于5%(PV)。该技术成功应用到物理实验正式发射中,常规整形脉冲波形的功率准确度优于2%,相关结果有力支撑了ICF激光驱动器激光参数精密调控设计。
高功率激光装置 ITB平台 功率准确度 光束调控 脉冲精密整形 high power laser facility Integration Test Bed power accuracy beam control pulse precision shaping 
强激光与粒子束
2022, 34(3): 031011
作者单位
摘要
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 中国工程物理研究院研究生院, 北京 100088
利用全矢量有限元法分析了光子晶体光纤(PCF)的结构参量对其本征模场分布的影响。数值计算结果表明, 具有多层空气孔、多层纤芯、大孔间距和大占空比的结构更有利于将光场约束在纤芯中, 纤芯层数、孔间距和占空比的增加均会导致PCF本征模场出现更高阶次的模式。纤芯层数和孔间距的增加会对由占空比减小所引起的功率泄漏进行一定的补偿, 通过减小空气占空比、增加纤芯层数和孔间距, 可实现大模场单模传输的可行性。对于4层空气孔、2层纤芯、占空比为0.01、孔间距为20 μm的PCF, 在保证单模传输的条件下, 纤芯半径可达40 μm, 有效模面积为3717 μm2, 纤芯功率集中度为68.32%。
光纤光学 光子晶体光纤 单模 有效模面积 
激光与光电子学进展
2017, 54(10): 100607
作者单位
摘要
中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
惯性约束聚变精密物理实验要求高功率激光驱动器具备时域-频域精密调控能力, 以实现对激光与等离子体相互作用过程中非线性效应的抑制。基于保偏光纤和单偏振光纤技术, 采用温度调谐双振荡器结合两级波导相位调制器实现激光脉冲频域精密调控, 采用两级高速电光调制脉冲整形技术实现激光脉冲时域精密调控, 将微波射频信号取样检测与声光开关进行连锁以确保整个系统的安全运行。实验获得了光谱带宽为0.15~0.3 nm、中心波长范围为1052.4~1053.6 nm的连续可调微焦耳级激光脉冲, 波长调谐精度为0.1 nm,在微焦级实现了对比度大于500∶1的高对比度整形激光脉冲, 脉冲时间波形顶部调制深度小于10%。
激光光学 脉冲整形 波长调谐 对比度 
中国激光
2017, 44(6): 0606001
作者单位
摘要
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 中国工程物理研究院北京研究生部, 北京 100088
采用相位调制技术产生的具有一定光谱分布的相位调制脉冲可以有效抑制高功率激光驱动器中大口径光学元件的横向受激布里渊散射和满足光束匀滑需求, 但该脉冲在装置各系统传输放大过程中, 由于光谱畸变会引起幅频调制(FM-to-AM)效应, 这种效应严重影响了激光装置的输出性能及实验效果。介绍了相位调制脉冲产生原理、引起FM-to-AM效应的根本原因及因素, 综述了目前美国的国家点火装置、法国的兆焦耳装置以及我国的神光-Ⅲ主机装置在FM-to-AM效应抑制技术方面取得的重要进展。
激光光学 惯性约束聚变 激光驱动器 前端系统 FM-to-AM效应 
激光与光电子学进展
2017, 54(2): 020005
作者单位
摘要
中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
研究了一种用于惯性约束聚变激光驱动器的纳秒级、高精度整形激光脉冲产生技术。采用中心波长为980 nm的激光二极管作为参考光, 以自动调控幅度调制器的偏置工作点, 实现了脉冲工作体制的幅度调制。基于高速电光调制技术, 采用两级幅度调制器设计了主振荡功率放大型全光纤激光脉冲产生装置。其中, 第1级幅度调制器用于对输入连续运转的单纵模激光进行初始精密脉冲整形, 第2级幅度调制器用于对激光脉冲进行二次精密整形和时域噪声抑制。实验研究表明, 该激光脉冲产生装置可输出脉冲宽度在“0.1~50.0 ns”范围内连续可调、对比度大于20001的高精度任意整形激光脉冲, 满足了激光脉冲产生装置较强脉冲控制能力的要求。
激光光学 整形脉冲 幅度调制器 对比度 
中国激光
2017, 44(1): 0105001
Author Affiliations
Abstract
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
The generation and measurement of complex ultraviolet laser pulse shapes is demonstrated in the SG-III laser facility. Relatively high contrast ratio of 3001 required by the physics experiment is achieved and successfully measured. Two continuous main shots validate the reproduction and the stability of the pulse shape, which provide solid foundation for precise physics experiment and laser power balance.
140.3300 Laser beam shaping 350.2660 Fusion 350.4600 Optical engineering 
Chinese Optics Letters
2015, 13(4): 041406

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!