作者单位
摘要
中国工程物理研究院激光聚变研究中心,四川 绵阳 621900
平响应X射线二极管目前已经广泛应用在国内外大型激光装置,用于角分布X射线辐射流的测量。在实际实验中,平响应X射线二极管会对整形脉冲驱动辐射源产生台阶变化的辐射流图像进行测量。为了保证信噪比良好,单一信号会接入示波器多通道,然后对不同通道信号进行数据处理,并且拼接得到最后信噪比很好的图像。该研究主要对这种数据处理方式进行了介绍,并给出了理论计算,同时对低温辐射流还原计算中的一种偏差做了理论近似和数值模拟,得到了偏差的相对不确定度。耦合所有因素的不确定度,得到了平响应X射线二极管的整体不确定度随辐射温度的变化曲线,实现了精密化诊断,完成了实验对于诊断的需求。
惯性约束聚变 整形脉冲 平响应X光二极管 信号拼接 低温辐射流 inertial confinement fusion shaped pulse flat-response X-ray diode signal splicing radiation flux in low temperature 
红外与激光工程
2020, 49(11): 20200181
作者单位
摘要
1 北京理工大学机械与车辆学院激光微纳制造实验室, 北京 100081
2 石河子大学机械电气工程学院, 新疆 石河子 832000
微孔作为一种常见结构,已被广泛应用于航空、生物、化工、新能源等领域。飞秒激光具有的超短脉冲宽度和超强峰值功率使其在高质量、高深径比微孔加工方面独具优势。综述了近年来飞秒激光非金属微孔加工方法及其应用的研究进展,包括飞秒激光时域/空域整形的电子动态调控微孔加工、飞秒激光辐照辅助化学刻蚀微孔加工、真空环境微孔加工、后表面液体辅助微孔加工以及控制环境温度微孔加工等,并分析了飞秒激光非金属微孔加工在机理以及工艺等方面面临的挑战。
激光技术 飞秒激光 非金属微孔 整形脉冲 加工环境 
激光与光电子学进展
2020, 57(11): 111417
作者单位
摘要
中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
研究了一种用于惯性约束聚变激光驱动器的纳秒级、高精度整形激光脉冲产生技术。采用中心波长为980 nm的激光二极管作为参考光, 以自动调控幅度调制器的偏置工作点, 实现了脉冲工作体制的幅度调制。基于高速电光调制技术, 采用两级幅度调制器设计了主振荡功率放大型全光纤激光脉冲产生装置。其中, 第1级幅度调制器用于对输入连续运转的单纵模激光进行初始精密脉冲整形, 第2级幅度调制器用于对激光脉冲进行二次精密整形和时域噪声抑制。实验研究表明, 该激光脉冲产生装置可输出脉冲宽度在“0.1~50.0 ns”范围内连续可调、对比度大于20001的高精度任意整形激光脉冲, 满足了激光脉冲产生装置较强脉冲控制能力的要求。
激光光学 整形脉冲 幅度调制器 对比度 
中国激光
2017, 44(1): 0105001
作者单位
摘要
兰州大学 核科学与技术学院, 兰州 730000
为了实现红外飞秒脉冲的整形及调控, 采用4f系统相位控制技术, 实验搭建了脉冲整形装置, 并利用整形脉冲对铷原子体系中激发双重态间的相干布居转移进行操控。结果表明, 控制抽运脉冲的附加相位, 可实现双重态中上激发态的饱和布居, 通过修改附加相位函数可将上、下激发态的布居数反转。整形脉冲同样适用于其它的原子和分子系统的相干布居转移的操控。
激光物理 激发双重态 整形脉冲 相干布居转移 laser physics the excited double states pulse shaping coherent control of population transfer 
激光技术
2016, 40(6): 782
杨青 1,2,*杜广庆 1,2陈烽 1,2吴艳敏 1,2[ ... ]侯洵 1,2
作者单位
摘要
1 西安交通大学机械工程学院机械制造系统工程国家重点实验室, 陕西 西安 710049
2 西安交通大学电子与信息工程学院陕西省信息光子技术重点实验室, 陕西 西安 710049
在传统双温模型中引入傅里叶热扩散机制,提出了一种时间序列热弛豫模型。数值研究获得了飞秒激光整形脉冲与金膜作用的跨时间尺度(飞秒~纳秒)热弛豫特性及温度场时空进化规律,并获得了双温弛豫周期与整形冲间隔的依赖关系。该研究对于澄清飞秒激光与金属作用的超快热弛豫机制,调控飞秒激光微纳加工中的超快加热过程具有重要意义。
超快光学 飞秒激光 整形脉冲 热弛豫 双温模型 
中国激光
2014, 41(5): 0502005
作者单位
摘要
吉林大学 原子与分子物理研究所, 长春 130012
实验通过二极管记录透射光信号随脉冲个数变化关系以及观测样品烧蚀形貌来研究不同实验条件对激光烧蚀的影响。使用的样品是厚度为50 μm铝箔。实验中通过研究不同变量:激光焦点与样品的相对位置、激光的能量、背景气体压强以及脉冲形状对烧蚀加工过程和结果的影响,从而获得较好烧蚀效果的条件,达到控制烧蚀加工过程的目的。特别是通过使用不同形状的脉冲和具有一定规律的脉冲序列对样品进行烧蚀,发现某些形状的整形脉冲烧蚀结果明显优于变换极限脉冲。说明脉冲整形作为一种新的技术可以在激光精细钻孔领域得到更深入的研究和应用。
整形脉冲 烧蚀 激光能量 气体压强 激光焦点位置 shaped pulse ablation laser energy ambient pressure focus position 
强激光与粒子束
2012, 24(10): 2381
作者单位
摘要
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
针对神光Ⅲ原型装置物理实验要求的三台阶整形脉冲(三个台阶的脉冲宽度比为1.5∶1.0∶0.5,强度比为1∶4∶16,脉冲总能量为500 J),并根据该装置的系统构成和具备任意脉冲整形技术,开展了高功率激光整形脉冲波形控制技术研究,通过对基频光段的增益饱和效应和三倍频光的频率转换过程的分析,获得了脉冲时间波形在传输、放大及频率转换过程中的一些变化特点,在此基础上建立了一套简单的预测模型。经过反复迭代计算和多次全系统联机实验获得了实验结果,并在物理实验中得到了应用,初步形成了高功率激光整形脉冲波形的控制方法。
高功率激光装置 整形脉冲 预测模型 增益曲线 high power laser facility pulse shaping prediction model gain curve 
强激光与粒子束
2011, 23(9): 2377
李晓坤 1,2,*刘百玉 1欧阳娴 1白永林 1[ ... ]雷娟 1,2
作者单位
摘要
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安 710119
2 中国科学院研究生院 ,北京 100049
为了实现整形脉冲调节的智能化,用计算机分别控制多个GaAs场效应管栅极偏压,并对场效应管产生的脉冲进行脉冲叠加,以控制整形电脉冲的形状;为提高输出整形脉冲的稳定性并减小触发晃动时间,优化设计了脉冲整形电路,结果表明:脉冲输出幅度1~5 V可调;方波脉冲输出宽度0~3 ns;脉冲前后沿分别为250 ps和350 ps;幅度稳定性:~4%(峰峰值) ;时域调整精度200 ps.
任意整形脉冲发生器 时间抖动 GaAs场效应管 Arbitrary shaping electrical pulse generator Time jitter GaAs FET 
光子学报
2009, 38(8): 1942
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
2 北京应用物理与计算数学研究所,北京 100088
利用成像型速度干涉仪研究了大型激光原型装置整形脉冲驱动实验中产生的预热效应。对冲击波传输过程进行了分析,发现第1和第2个冲击波的起始时刻都在胶层里面,第3个冲击波的起始时刻在熔石英窗口里面。实验发现,由于X光离化效应的影响,第1和第2个冲击波传输引起的条纹跳变并没有观察到。第2和第3个激光脉冲前半部分产生的离化效应将透明窗口完全漂白,导致成像型速度干涉仪获得的条纹图出现了间断。实验观察到了第3个激光脉冲驱动的冲击波在熔石英中产生的加速和减速过程。对整形脉冲获得的实验结果进行了初步解释,得出现有条件下整形脉冲驱动应注意的问题为:控制最高辐射温度,选用带隙大的窗口材料,尽量减小胶层的厚度。
冲击波 离化 干涉仪 整形脉冲 shock ionization interferometer shaped pulse 
强激光与粒子束
2009, 21(9): 1360
作者单位
摘要
北京应用物理与计算数学研究所,北京 100094
利用整形脉冲驱动内爆是实现燃料高收缩比压缩的有效方法。单脉冲辐射驱动冲击波压缩气体靶动力学过程可分为冲击波压缩、近等熵压缩、压缩降温和膨胀降温4个阶段,其中近等熵压缩阶段是获得燃料高密度的关键。通过改变第一个台阶结束时间,可找到合适的双台阶辐射整形脉冲驱动内爆,获得比单一脉冲驱动更高的压缩密度。数值模拟结果显示:利用第1个台阶产生的冲击波多次压缩燃料,同时逐步提高燃料区压强,这样第2个冲击波传入燃料区时的强度很弱,几乎不引起熵增,但能进一步压缩燃料。同样的原理可推广到多台阶整形脉冲驱动内爆压缩研究中。
气体靶 冲击波 等熵压缩 整形脉冲 gas capsule shock wave isentropic compression shaped pulse 
强激光与粒子束
2009, 21(9): 1339

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!