作者单位
摘要
1 上海师范大学 信息与机电工程学院,上海 200234
2 清华大学 材料学院,北京 100084
3 无锡市好达电子股份有限公司,江苏 无锡 214124
射频前端的高度集成和高能量密度使声表面波(SAW)器件的非线性问题愈发严重。该文搭建了射频SAW器件非线性信号的测量系统,对SAW谐振器的二次谐波(H2)和三次谐波(H3)信号进行了准确测量。分析测量结果,讨论了非线性谐波信号的产生机制,并通过非线性有限元(FEM)模型仿真结果与测量结果拟合对比,验证了介电非线性和声应变的非线性效应对谐波产生的影响,为进一步研究非线性抑制方法,设计高线性度SAW器件提供了重要支撑。
声表面波(SAW)器件 非线性 测量系统 谐波信号 产生机制 surface acoustic wave (SAW) device nonlinearity measurement system harmonic signals generation mechanism 
压电与声光
2022, 44(5): 682
作者单位
摘要
西南民族大学 化学与环境保护工程学院, 四川 成都 610041
在反应温度为200 ℃、反应时间为8 h的温和条件下, 采用水热法合成了近红外到近红外的Mn2+掺杂NaYF4 ∶Yb3+/Tm3+上转换荧光纳米粒子, 再以两亲性聚合物C18PMH-mPEG作为亲水性配体修饰到上转换荧光纳米粒子表面, 得到具有水溶性的上转换荧光纳米粒子。然后在980 nm近红外光源激发下, 测量了上转换荧光纳米粒子的荧光发射光谱, 在(800±10) nm附近, 观察到了较强的单近红外光发射(3H4 →3H6)。对样品进行细胞毒性实验, 结果表明制得的水溶性Mn2+掺杂NaYF4 ∶Yb3+/Tm3+纳米粒子具有良好的生物相容性。并进一步在小鼠体内进行了近红外成像, 表明其在生物成像领域将会具有一定的应用前景。
水热法 上转换 纳米粒子 生物成像 hydrothermal Yb3+/Tm3+ Yb3+/Tm3+ upconversion nanoparticles bioimaging 
发光学报
2018, 39(10): 1371
作者单位
摘要
1 中国科学院 上海光学精密机械研究所 中国科学院强激光材料重点实验室,上海 201800
2 中国科学院大学,北京 100049
针对晶体表面的损伤特性,采用小光斑扫描激光预处理技术预辐照DKDP晶体元件,并采用表面损伤自动探测系统实时分析每个脉冲辐照后晶体表面的损伤情况,比较预处理和未预处理区域的损伤点密度确定表面预处理效果,并进一步模拟分析表面各类缺陷在纳秒强激光辐照下的动态过程,解释激光预处理对精抛表面提升作用的微观机制并分析它对粗抛表面提升不明显的原因。实验结果表明,激光预处理技术对粗抛表面的提升作用并不明显,但是可以大幅度抑制精抛表面的损伤点密度。在本文的实验条件下,晶体表面的抗激光损伤能力可以提升约60%。比较体材料和精抛表面的预处理效果发现: 当体材料的抗破坏能力通过预处理提升后,精抛表面的抗激光损伤能力也会提升,由此可见精抛表面的激光预处理效果与体材料性能相关。
激光损伤 激光预处理 损伤阈值 预处理效果 氘化磷酸二氢钾(DKDP) laser damage laser conditioning damage threshold laser conditioning effects dopted deuterium KDP (DKDP) 
光学 精密工程
2017, 25(8): 1987
作者单位
摘要
第二炮兵工程大学,西安 710025
剩余寿命预测对于设备的维修与保养具有十分重要的意义。现有的剩余寿命预测方法大多只利用了设备的当前退化信息,对设备的历史寿命信息没有充分利用,而这些信息往往包含着设备寿命的演化信息,对于准确预测设备的剩余寿命具有重要意义。针对这个问题,提出了一种融合随机退化过程与失效率建模的设备剩余寿命预测方法。该方法首先将设备的退化过程建模为Wiener过程,然后利用Cox比例失效模型建模的方法融合设备退化过程对设备失效率的影响,由此达到利用设备历史监测信息的目的。进一步通过Bayes方法,利用当前退化监测信息对退化过程模型的参数进行更新,基于此进行剩余寿命预测,从而实现设备历史数据与当前数据的有效融合。最后,通过激光发生器的退化测量数据验证了提出的方法,说明该方法是有效的,具有一定的应用价值。
剩余寿命预测 Wiener过程 失效率 可靠性 激光发生器 remaining lifetime prediction Wiener process hazard rate reliability laser generator 
电光与控制
2015, 22(12): 112

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!