石建平 1,2纪艳平 1,2李子旻 1,2金涛 1,2[ ... ]董可秀 3,*
作者单位
摘要
1 光电材料科学与技术安徽省重点实验室,安徽 芜湖 241000
2 安徽师范大学物理与电子信息学院,安徽 芜湖 241000
3 滁州学院电子与电气学院,安徽 滁州 239000
如何在低阈值小尺度(毫瓦或皮焦量级、微米以下)情况下激发非线性光学效应是近年来光学领域研究的重要课题。该研究最直接的应用需求就是光子集成芯片,这是未来实现超高速、大容量信息网络体系的基础。光子晶体具有类似于半导体能带的光子禁带(PBG),被誉为“光子半导体”,为人们提供了一种新颖而又实用的操纵光子的物理手段,使低阈值、可集成非线性效应产生成为可能。越来越多的非线性效应在光子晶体中已经被发现,例如光子晶体慢光、带隙孤子、电磁感应透明、二次谐波产生、光学双稳态等,本文将着重对可用于光子集成器件开发的光子晶体非线性效应研究领域的一些主要成果和进展进行总结,介绍其相关应用并对光子晶体非线性效应研究作出展望。
光子晶体 非线性光学效应 低阈值集成光学非线性 光子集成器件 photonic crystals nonlinear optical effect nonlinear integrated optics with low thresholds photonic integrated devices 
光电工程
2017, 44(3): 297
作者单位
摘要
滁州学院机械与电子工程学院, 安徽 滁州 239000
通过数值模拟研究了各层参数对极化调控的背入射异质结分离吸收倍增层型AlGaN 基雪崩光电二极管(APDs)性能的影响,并详细分析相关物理机制。计算结果表明:参数的优化有利于降低APDs 的雪崩击穿电压,提高倍增因子。特别是对于P-GaN 层AlGaN 雪崩光电二极管,倍增因子增加可超过300%,这是由于该雪崩光电二极管的GaN/Al0.4Ga0.6N 异质界面的强极化电荷调节了倍增层、中间插入层、吸收层的电场分布,增加了载流子的注入和倍增效率,同时还由于参数优化减小了倍增时的暗电流。
光学器件 异质结雪崩光电二极管 分离吸收倍增 日盲 极化场 
激光与光电子学进展
2014, 51(6): 062304
作者单位
摘要
1 安徽师范大学 物理与电子信息学院,安徽 芜湖 241000
2 中国科学院 光电技术研究所 微细加工光学技术国家重点实验室,四川 成都 610209
提出了一种基于纳米光学天线的新型扫描近场光学探针,基本结构是在传统光学探针的下端面集成金属偶极纳米光学天线,当入射光照射金属纳米偶极天线时激发金属表面等离激元共振,在天线间隙处产生了巨大的局域场增强,既提高耦合进入探针的光信号强度,又提高信噪比,实现高分辨率。利用时域有限差分(FDTD)法研究了不同孔径(50,100,130,150,170和200 nm)的新型探针对同一样品的探测结果。照明光源为830 nm平面波,TE极化,扫描高度10 nm。研究结果表明新型探针分辨率随孔径增大时变化规律是先增加后减小,在孔径150 nm 时分辨率最高,达 45 nm,比同样孔径传统探针分辨率提高近4倍。对比分析了当探针位于样品中心时不同孔径探针端面光场分布图,认为新型探针分辨率变化规律是纳米天线在探针上的有效长度不同所致。对其灵敏度和对比度也进行了初步分析。
光学器件 纳米光学天线 扫描近场光学探针 表面等离激元共振 
光学学报
2010, 30(5): 1459
作者单位
摘要
1 安徽师范大学物理与电子信息学院微纳光电技术实验室, 安徽 芜湖 241000
2 安徽师范大学化学与材料科学学院, 安徽 芜湖 241000
3 中国科学院光电技术研究所微细加工光学技术国家重点实验室, 四川成都 610209
硅材料是半导体微细加工工艺中的常用材料,属于m3m对称点群,通常无法实现二次谐波产生,导致光子系统芯片中的非线性组件集成困难。提出一种在硅材料中可以实现二次谐波产生光子晶体波导结构。首先给出该波导结构的组成及其基本原理,然后讨论谐波产生的计算模型和计算方法,最后给出针对10.6 μm波长而设计的全硅二维光子晶体波导具体结构参数,以有限时域差分算法为基础,计算分析了谐波产生情况。研究结果表明:该结构利用光子晶体带隙边缘效应增强了硅材料的电四极极化强度从而实现二次谐波产生,在完全相位匹配条件下,当抽运波强度为1.3 MW/mm2时,转换效率为0.2%。最后,对影响谐波转换效率的因素进行了初步分析。
非线性光学 二次谐波产生 有限时域差分法 光子晶体波导 
光学学报
2009, 29(2): 506
作者单位
摘要
安徽师范大学物理与电子信息学院, 安徽 芜湖 241000
光子晶体偏振滤波器是利用光子晶体带隙特性来控制信号光偏振状态的一种新型滤波器, 在光纤通信、光学传感测量、光学信息处理等领域均有重要应用。通道数多少是偏振滤波器设计的重要指标, 通道越多则信息容量越大, 越有利于系统的小型化微型化。利用光学传输矩阵法研究了影响一维光子晶体偏振滤波器通道数目的因素, 研究表明:(1)光子晶体缺陷层厚度是影响滤波器通道数目的关键因素, 通道数N与厚度D近似满足线性关系, 在500 ~650 nm波段函数关系为N=0.0035D+0.159; (2)缺陷层折射率nc的变化也会导致通道数改变, 折射率越大通道数越多;( 3)光子晶体单元层数和单元厚度改变不会影响滤波通道数, 但可以调节通道中心波长位置, 同时对偏振度和分离度也有影响。
多通道偏振滤波器 光子晶体滤波器 光学传输矩阵法 一维光子晶体 
中国激光
2008, 35(s2): 158

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!