作者单位
摘要
1 淮南师范学院 电子工程学院,安徽 淮南 232038
2 潍坊学院 化学化工与环境工程学院,山东 潍坊 261061
利用高温固相法制备了一系列不同Pr3+掺杂浓度的CsLa(WO42荧光粉,测试了X射线衍射(XRD)、漫反射光谱、激发光谱、发射光谱与荧光衰减曲线,讨论了光致发光光谱与浓度、温度的联系,并基于荧光强度比(FIR)技术计算得出温度传感相关参数。CsLa(WO42∶Pr3+主要呈现源自3P01D2能级的发射,对应的最佳掺杂浓度分别为0.03和0.01,经证实电偶极⁃电偶极相互作用导致了浓度猝灭。3P01D2能级的发射随温度变化趋势不同,这主要归因于Pr3+⁃W6+的价间电荷迁移(IVCT)、交叉弛豫(CR)和多声子弛豫(MPR)等过程的综合作用。由于上述发射表现出不同的浓度和温度依赖特性,实现了颜色可调谐发光。基于3P13H5/3P03H4热耦合能级对和1D23H4/3P03H4非热耦合能级对的FIR,计算得到相对灵敏度分别为586.01/T2 K-1和1 071.78/T2 K-1,表明该材料在温度传感领域具有潜在应用价值。
Pr3+ CsLa(WO42 光致发光 温度传感 荧光强度比(FIR) Pr3+ CsLa(WO42 photoluminescence temperature sensing fluorescence intensity ratio(FIR) 
发光学报
2023, 44(9): 1570
Xinlan Ge 1,2,3Licheng Zhu 1,2,*Zeyu Gao 1,2Ning Wang 1,2[ ... ]Ping Yang 1,2,**
Author Affiliations
Abstract
1 Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
A real-time wavefront sensing method for arbitrary targets is proposed, which provides an effective way for diversified wavefront sensing application scenarios. By using a distorted grating, the positive and negative defocus images are simultaneously acquired on a single detector. A fine feature, which is independent of the target itself but corresponding to the wavefront aberration, is defined. A lightweight and efficient network combined with an attention mechanism (AM-EffNet) is proposed to establish an accurate mapping between the features and the incident wavefronts. Comparison results show that the proposed method has superior performance compared to other methods and can achieve high-accuracy wavefront sensing in varied target scenes only by using the point target dataset to train the network well.
wavefront sensing distorted grating fine feature 
Chinese Optics Letters
2023, 21(6): 060101
作者单位
摘要
淮南师范学院 电子工程学院,淮南 232038
利用高温固相法在1 200℃制备了一系列红色荧光粉(Y1-x6TeO12xEu3+x=0.1~0.5)材料。对样品进行了X射线衍射、形貌特征、激发和发射光谱、浓度猝灭、热稳定性、荧光衰减曲线以及发光二极管封装与光色电性能等方面的分析与探究。结果表明:该红色荧光粉样品能被近紫外光(393 nm处)和蓝光(464 nm处)有效激发,在632 nm处表现出较强的红光发射。根据荧光强度与掺杂浓度的变化趋势,确定出最佳Eu3+掺杂量为x=0.3,更多的掺杂量引起浓度猝灭。进一步分析激活剂Eu3+间能量传递类型,得出电偶极-电偶极作用导致了浓度猝灭。(Y0.76TeO12:0.3Eu3+在150℃时积分发光强度是室温的76.5%,热激活能为0.196 9 eV。该样品的荧光寿命为813 μs,色坐标值为(0.637 6,0.343 1),并基于板上芯片工艺进行了发光二极管封装,对光色电性能进行了表征。(Y1-x6TeO12xEu3+荧光粉表现出了良好的发光特性、发光热稳定性及色纯度,在白光发光二极管中具有潜在的应用价值。
(Y1-x)6TeO12:xEu3+ 发光特性 浓度猝灭 热稳定性 白光发光二极管 (Y1-x)6TeO12:xEu3+ Luminescent properties Concentration quenching Thermal stability w-LED 
光子学报
2023, 52(2): 0216001
陈春璐 1,2,3赵旺 1,2,**赵孟孟 1,2,3王帅 1,2,*[ ... ]杨康建 1,2
作者单位
摘要
1 中国科学院自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
受天光背景、大气湍流强度、信标光回光特性和探测器噪声等因素影响,夏克-哈特曼波前传感器子孔径光斑常存在强度分布不均匀和低信噪比的情况,故子孔径内光斑质心定位不准且波前探测精度下降。提出了一种基于噪声模型变换的子孔径光斑质心提取方法,采用方差稳定变换(VST)将探测引入的泊松-高斯噪声转换为高斯噪声,进一步基于残差反馈优化BM3D策略实现低信噪比子孔径图像的高效去噪。结果显示:所提方法可有效提取低信噪比夏克-哈特曼波前传感器光斑阵列图像中的光斑信号数据,提高了子孔径光斑的质心定位精度和稳定性;相比于传统自适应阈值法等方法,所提方法在子光斑图像峰值信噪比低于6时,可以提升波前复原精度2倍以上。
测量 自适应光学 质心提取 方差稳定变换 改进去噪算法 波前复原 
光学学报
2023, 43(3): 0312005
邱学晶 1,2,3赵旺 1,2杨超 1,2,3程涛 1,2,3[ ... ]许冰 1,2
作者单位
摘要
1 中国科学院光电技术研究所 自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
针对目前相位差法收敛速度慢以及需要CCD在焦面以及离焦面多次测量的问题,提出了基于离焦光栅的单帧深度学习相位反演算法。该算法用离焦光栅对入射波前进行调制,可同时在透镜焦平面上获得正负离焦以及焦面远场光强分布;此外算法引入卷积神经网络替代原有的多次扰动寻优过程,波前复原算法耗时大大降低。仿真结果表明:算法可根据单帧透镜焦面远场光强分布实现高精度快速波前复原,残差波前的均方根为入射波前均方根的6.7%,算法进行一次波前复原所需时间可小于0.6 ms。
波前复原 离焦光栅 卷积神经网络 相位差法 wavefront reconstruction defocus grating convolutional neural network phase diversity 
红外与激光工程
2020, 49(10): 20200273
赵旺 1,2,*赵孟孟 1,2,3王帅 1,2杨平 1,2
作者单位
摘要
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
近地面激光大气传输中, 由于强湍流的影响, 畸变波前中存在相位涡旋, 使得自适应光学系统校正效果下降甚至失效。通过建立近地面激光大气传输模型, 分析了不同闪烁强度下畸变波前中相位涡旋分布特性, 以及自适应光学系统校正效果。针对近地面相位涡旋不能被有效校正的问题, 分析了波前畸变被完全复原时不同单元数变形镜对含相位涡旋波前畸变的校正效果。研究表明: 采用直接斜率法的自适应光学系统只能校正畸变波前中的连续相位, 不能校正相位涡旋组成的不连续相位; 含相位涡旋的波前畸变被有效复原后, 连续表面变形镜能够校正不连续相位, 现阶段限制自适应光学系统近地面校正效果的关键因素是波前畸变能否被有效复原。
自适应光学 激光传输 大气湍流 相位涡旋 adaptive optics laser propagation atmospheric turbulence phase vortex 
量子电子学报
2020, 37(4): 466
赵旺 1,2,3董理治 1,2杨平 1,2许冰 1,2王帅 1,2,*
作者单位
摘要
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
建立了基于目标粗糙特性的主动照明信标数值计算模型,分析了目标粗糙特性对散射回波光强均匀性和波前均方根的影响,对比了不同目标粗糙程度下主动照明信标探测波前和点光源信标探测结果的差异,以及自适应光学系统校正效果。研究结果表明:随着目标表面粗糙程度减弱,散射回波的波前均方根变大,主动照明信标和点光源信标探测波前结果差异增大,自适应光学系统校正效果下降。此外,增多照明光路数可以抑制弱粗糙表面时上行链路湍流对主动照明信标波前探测的影响。
自适应光学 波前探测 主动照明信标 粗糙表面 
中国激光
2019, 46(7): 0705002
作者单位
摘要
1 淮南师范学院 电子工程学院, 安徽 淮南 232038
2 潍坊市产品质量检验所, 山东 潍坊 261031
利用高温固相法制备了BaGd2(MoO4)4∶Tb3+与BaGd2(MoO4)4∶Tb3+,Eu3+荧光粉, 并借助于X射线衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线对样品的结构及发光性能进行了表征。在290 nm激发下, BaGd2(MoO4)4∶Tb3+样品在550 nm处具有较强的绿光发射, 表明该样品可用作绿色荧光粉。Tb3+离子的最佳掺杂浓度为50%, 电偶极间相互作用是引起浓度猝灭效应的主要原因。当在BaGd2(MoO4)4∶Tb3+荧光粉中共掺入Eu3+离子后, 可同时观测到Tb3+与Eu3+离子的特征发射峰。随Eu3+掺杂浓度的升高, Tb3+离子的发光强度逐渐下降, 而Eu3+离子的发光强度逐渐增加。根据BaGd2(MoO4)4∶Tb3+,Eu3+中Tb3+离子的荧光寿命计算了Tb3+与Eu3+离子间的能量传递效率, 并根据荧光寿命与激活离子掺杂浓度的关系证实了能量传递机制为电偶极间相互作用。
钼酸盐 荧光粉 能量传递 颜色可调 molybdate phosphors energy transfer tunable color 
发光学报
2019, 40(5): 581
作者单位
摘要
淮南师范学院 低温共烧材料省级重点实验室, 安徽 淮南 232038
采用高温固相法在1 100 ℃下合成出一系列不同掺杂浓度的BaLa1-xLiTeO6∶xEu3+ (x=0.1~1)红色荧光粉,并对其结构、形貌、光谱特性及LED光色电性能进行了系统研究。结果表明,在BaLaLiTeO6中Eu3+的最大和最佳掺杂浓度均为x=0.4,更大的掺杂量将导致杂相和浓度猝灭的产生。在465 nm光激发下,该浓度的样品发射光谱中5D0 →7F2与5D0 →7F2强度比值达到了7.31,色品坐标值为(0.665,0.334),色纯度为99.7%,荧光寿命为660.9 μs,绝对量子效率达到71.4%。在100 ℃时积分发光强度是室温时的84.5%,热激活能经计算为0.434 eV。基于该样品的红光LED灯珠能够发出明亮的红光。综上所述,该类荧光粉表现出良好的发光效率、色纯度及发光热稳定性,在白光LED中具有潜在的应用价值。
高温固相法 LED用红色荧光粉 发光 BaLaLiTeO6∶Eu3+ BaLaLiTeO6∶Eu3+ high-temperature solid-state reaction red-emitting phosphor for LED luminescence 
发光学报
2019, 40(4): 432
作者单位
摘要
集成光电子学国家重点联合实验室 吉林大学电子科学与工程学院, 吉林 长春 130012
采用金属有机化学气相沉积法在蓝宝石衬底上制备Ga、P掺杂的ZnO薄膜, 分别采用X射线衍射、扫描电子显微镜、霍尔效应测试、光致发光谱对样品进行表征。通过Ga、P掺杂分别得到n、p型ZnO薄膜, n型ZnO薄膜的载流子浓度可以达到1×1019 cm-3, p型ZnO薄膜的载流子浓度达到1.66×1016 cm-3。 所制备的ZnO薄膜具有c轴择优生长取向, 并且p型ZnO薄膜具有较好的光致发光特性。
ZnO薄膜 Ga、P掺杂 MOCVD MOCVD ZnO films Ga-doped P-doped 
发光学报
2013, 34(1): 82

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!