张津豪 1,*刘绰 1李婉 1郝肖 1[ ... ]马蕾 1,3
作者单位
摘要
1 河北大学电子信息工程学院, 河北 保定 071000
2 清华大学微电子学院, 北京 100084
3 河北大学河北省数字医疗工程重点实验室, 河北 保定 071000
以n型单晶Si(111)为衬底, 利用Au作为催化剂, 在温度、 N2流量和生长时间分别为1 100 ℃, 1.5 L·min-1和60 min的条件下, 基于固-液-固生长机制, 生长了直径为60~80 nm、 长度为数十微米的高密度Si纳米线。 随后, 以Y2O3粉末为掺杂源, 采用高温扩散方法对Si纳米线进行了钇(Y)掺杂。 利用扫描电子显微镜、 X射线衍射仪和荧光分光光度计对不同掺杂温度(900~1 200 ℃)、 掺杂时间(15~60 min)和N2流量(0~400 sccm)等工艺条件下制备的Y掺杂Si纳米线的形貌、 成分、 结晶取向以及激发光谱和发射光谱特性进行了详细的测量和表征。 结果表明, 在掺杂温度为1 100 ℃, N2流量为200 sccm、 掺杂时间为30 min和激发波长为214 nm时, Y掺杂Si纳米线样品表现出较好的发光特性。 样品分别在470~500和560~600 nm范围内出现了两条发光谱带。 560~600 nm的发光带由两个发光峰组成, 峰位分别为573.6和583.8 nm, 通过结构分析可以推测, 这两个发光峰是由Y3+在Si纳米线的带隙中引入的杂质能级引起的。 而470~500 nm较宽的发光带同样来源于Y离子在Si纳米线带隙中引入的与非晶SiOx壳层中氧空位能级十分接近的杂质能级。
Si纳米线 Y掺杂 光致发光 结构特性 Si naowires Y doped Photoluminescence Structural properties 
光谱学与光谱分析
2017, 37(5): 1357

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!