作者单位
摘要
1 新疆农业大学数理学院, 新疆 乌鲁木齐 830052
2 新疆农业科学院综合试验场, 新疆 乌鲁木齐 830013
3 新疆农业大学机电工程学院, 新疆 乌鲁木齐 830052
可溶性固形物含量(SSC)是反映苹果品质和成熟度的重要生理指标, 能够用于苹果品质分析和成熟度预测。 以新疆阿克苏冰糖心红富士苹果为研究对象, 从果实膨大定形期至完熟期, 以等间隔周期3 d采摘样本, 测其380~1 100 nm的可见/近红外光谱和SSC, 共552个样本。 然后融合分数阶微分(FD)及置换重要性-随机森林(PIMP-RF)算法, 构建成熟期苹果SSC预测的集成学习模型。 结果表明, 基于PLS模型优选的分数阶微分阶次为0阶、 0.4阶、 1.1阶和1.6阶, 且通过PIMP-RF算法进行特征重要性和可解释性分析结果显示, 利用可见/近红外光谱预测成熟期苹果SSC的关键波长主要为可见光波段, 这为今后研发新疆冰糖心红富士苹果的快速无损检测设备提供参考; 基于分数阶微分技术和PIMP-RF算法构建的成熟期苹果SSC集成学习模型具有很好的预测能力, 其训练集的相关系数r等于0.989 2, 平均绝对误差MAE等于0.241 2, 均方根误差RMSE等于0.309 1, 平均绝对百分误差等于0.018 3; 测试集的相关系数r等于0.903 8, 平均绝对误差MAE等于0.549 9, 均方根误差RMSE等于0.740 8, 平均绝对百分误差等于0.043 4, 相比于FD0-PIMP-RF、 FD0.4-PIMP-RF、 FD1.1-PIMP-RF和FD1.6-PIMP-RF模型, 集成学习模型为最优。 故而, 集成分数阶微分技术与PIMP-RF算法, 结合可见近红外光谱技术可有效地实现成熟期苹果的可溶性固形物含量预测。
可见/近红外光谱 分数阶微分 置换重要性-随机森林 K近邻(KNN)回归 可溶性固形物含量 Visible/near-infrared spectrum Fractional differential Permutation importance-random forest K-nearest neighbors (KNN) regression Soluble solids content 
光谱学与光谱分析
2023, 43(10): 3059
作者单位
摘要
1 新疆农业大学数理学院, 新疆 乌鲁木齐 830052
2 新疆农业大学机电工程学院, 新疆 乌鲁木齐 830052
苹果产地溯源具有重要的应用价值和现实意义。 为了探寻苹果产地溯源新方法, 以红富士品种为研究对象, 以新疆阿克苏、 山东烟台、 陕西洛川三个产地671个红富士苹果样本为试材, 分别采集其590~1 250 nm的近红外透射光谱, 然后基于分数阶微分(FD)及主成分分析(PCA)-谱回归判别分析(SRDA)进行多模型融合, 构建红富士苹果产地溯源的集成学习模型。 首先, 将经过光谱校正后的光谱数据划分为训练集和测试集, 并利用分数阶微分预处理训练集光谱, 获取不同阶次(取0~2阶, 步长为0.1)的分数阶微分光谱; 结合不同阶次的分数阶微分光谱及PCA-SRDA算法构建基学习器, 将基学习器预测结果构成一个新训练集, 并通过决策树算法完成模型融合, 得到最终分类预测模型; 随后, 采用对应阶次的分数阶微分预处理测试集光谱, 并基于已建立的基学习器, 获得测试集相应的预测结果; 最后, 将预测结果构成一个新测试集, 并基于已建立的分类预测模型, 输出最终的预测结果。 按7:3比例随机划分样本集, 并进行200次重复实验。 结果表明, 结合不同阶次的分数阶微分预处理及线性判别分析(LDA)、 SRDA、 PCA-LDA、 PCA-SRDA算法建立多模型融合集成学习模型, 具有较好的鉴别效果和较强的鲁棒性, 其中, FD-PCA-SRDA多模型融合集成学习模型为最优, 其训练集的平均精度为97.33%, 标准差为0.49%, 测试集的平均精度为94.84%, 标准差为1.48%。 故, 分数阶微分技术及PCA-SRDA算法结合近红外透射光谱可成功、 有效地实现苹果产地溯源。
近红外透射光谱 分数阶微分 主成分分析-谱回归判别分析 苹果 产地溯源 Near-infrared transmission spectrum Fractional differential Principal component analysis-spectral regression discriminant analysis Apple Origin traceability 
光谱学与光谱分析
2022, 42(10): 3249
作者单位
摘要
1 新疆农业大学机电工程学院, 新疆 乌鲁木齐 830052
2 江苏大学食品与生物工程学院, 江苏 镇江 212013
3 新疆农业大学数理学院, 新疆 乌鲁木齐 830052
苹果水心病在众多苹果主产区都有发生, 现阶段没有合适的方法实现快速鉴别和分类。 为了探索苹果水心鉴别新方法, 采用近红外透射光谱与化学计量学方法结合非线性流形学习数据降维技术, 逐个采集好果与疑似水心病果样本590~1 250 nm的近红外透射光谱, 将经光谱校正后的原始光谱做多元散射校正(multivariate scattering correction, MSC)、 标准正态变量变换(standard normal variate transformation, SNVT)、 二阶求导(2nd derivative)、 一阶求导(1st derivative)、 归一化(normalization)、 卷积平滑法(savitzky-golay smoothing, SG)、 均值中心化(mean centering, MC)、 移动平均平滑(moving average, MA)、 直接差分二阶求导(direct differential second derivative, DDSD)以及直接差分一阶求导(direct differential first derivative, DDFD)等10余种光谱预处理; 先对预处理后的光谱数据建立全波长模式识别模型从而找出多元散射校正是最优预处理方法, 而后再分别用多维尺度分析(multidimensional scaling, MDS)、 分布邻域嵌入(stochastic neighbor embedding, SNE)、 对称分布邻域嵌入(symmetric stochastic neighbor embedding, SymSNE)、 t分布邻域嵌入(t-distributed stochastic neighbor embedding, t-SNE)、 拉普拉斯映射(laplacian eigenmaps, LE)、 等距特征映射(isomap)、 地标等距映射(landmark isomap)、 局部线性嵌入(locally linear embedding, LLE)、 扩散映射(diffusion maps, DM)等多种流形学习方法对经多元散射校正预处理后的光谱数据做降维处理, 并结合马氏距离判别(mahalanobis distance discrimination, MD)、 二次判别分析(quadratic discriminant analysis, QDA)、 贝叶斯判别(Bayesian discrimination, BD)、 K最近邻法(K nearest neighbor, KNN)识别其水心存在与否。 结果表明, 提取前12主成分, 采用多元散射校正-地标等距映射-K最近邻法(MSC-landmark isomap-KNN)模型识别效果最优, 校正集和预测集识别率分别为97.5%和96.3%。 故, 流形学习方法结合近红外透射光谱可成功、 高效地实现苹果水心鉴别, 为进一步研发水心鉴别设备提供新的理论指导。
苹果水心病 近红外光谱 化学计量法 流行学习 模式识别 Apple watercore disease Near infrared spectroscopy Chemometrics Manifold learning Pattern recognition 
光谱学与光谱分析
2020, 40(8): 2415
作者单位
摘要
1 浙江大学生物系统工程与食品科学学院, 浙江 杭州 310029
2 新疆农业大学机
3 北京中棉机械成套设备有限公司, 北京 100089
采用光纤漫反射光谱采集模式, 采集未经预处理皮棉的近红外光谱, 对比不同的光谱预处理方式, 应用偏最小二乘回归建立皮棉杂质含量预测模型, 判别分析法分类皮棉和杂质含量级别。 采用一阶微分光谱预处理, 使用3个主成分建立的杂质含量PLS模型预测相关系数r为0.906, RMSEC为0.440, RMSEP为0.823; 采用判别分析, 分类含有植物性杂质皮棉和纯皮棉, 使用15个主成分准确度达到95.4%; 判别含有多类杂质皮棉, 分类准确率仅能达到80.9%。 而杂质含量级别分类效果不佳。 研究表明, 皮棉近红外光谱可以预测皮棉中杂质含量等指标, 但受到杂质含量、 类型和均匀度的影响, 后续研究应通过透射采集模式等方法, 改善光谱质量, 提高预测精度。Cotton by Using NIR Spectroscopy Technique
近红外光谱 皮棉 判别分析 杂质含量 分类 NIR spectroscopy Ginned cotton PLS PLS DA Trash content 
光谱学与光谱分析
2010, 30(3): 649

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!