作者单位
摘要
1 新疆农业大学机电工程学院, 新疆 乌鲁木齐 830052
2 江苏大学食品与生物工程学院, 江苏 镇江 212013
3 新疆农业大学数理学院, 新疆 乌鲁木齐 830052
苹果水心病在众多苹果主产区都有发生, 现阶段没有合适的方法实现快速鉴别和分类。 为了探索苹果水心鉴别新方法, 采用近红外透射光谱与化学计量学方法结合非线性流形学习数据降维技术, 逐个采集好果与疑似水心病果样本590~1 250 nm的近红外透射光谱, 将经光谱校正后的原始光谱做多元散射校正(multivariate scattering correction, MSC)、 标准正态变量变换(standard normal variate transformation, SNVT)、 二阶求导(2nd derivative)、 一阶求导(1st derivative)、 归一化(normalization)、 卷积平滑法(savitzky-golay smoothing, SG)、 均值中心化(mean centering, MC)、 移动平均平滑(moving average, MA)、 直接差分二阶求导(direct differential second derivative, DDSD)以及直接差分一阶求导(direct differential first derivative, DDFD)等10余种光谱预处理; 先对预处理后的光谱数据建立全波长模式识别模型从而找出多元散射校正是最优预处理方法, 而后再分别用多维尺度分析(multidimensional scaling, MDS)、 分布邻域嵌入(stochastic neighbor embedding, SNE)、 对称分布邻域嵌入(symmetric stochastic neighbor embedding, SymSNE)、 t分布邻域嵌入(t-distributed stochastic neighbor embedding, t-SNE)、 拉普拉斯映射(laplacian eigenmaps, LE)、 等距特征映射(isomap)、 地标等距映射(landmark isomap)、 局部线性嵌入(locally linear embedding, LLE)、 扩散映射(diffusion maps, DM)等多种流形学习方法对经多元散射校正预处理后的光谱数据做降维处理, 并结合马氏距离判别(mahalanobis distance discrimination, MD)、 二次判别分析(quadratic discriminant analysis, QDA)、 贝叶斯判别(Bayesian discrimination, BD)、 K最近邻法(K nearest neighbor, KNN)识别其水心存在与否。 结果表明, 提取前12主成分, 采用多元散射校正-地标等距映射-K最近邻法(MSC-landmark isomap-KNN)模型识别效果最优, 校正集和预测集识别率分别为97.5%和96.3%。 故, 流形学习方法结合近红外透射光谱可成功、 高效地实现苹果水心鉴别, 为进一步研发水心鉴别设备提供新的理论指导。
苹果水心病 近红外光谱 化学计量法 流行学习 模式识别 Apple watercore disease Near infrared spectroscopy Chemometrics Manifold learning Pattern recognition 
光谱学与光谱分析
2020, 40(8): 2415
作者单位
摘要
山东大学机电与信息工程学院, 山东 威海 264209
随着天文学的发展以及天文望远镜观测能力的提升, 国内外许多大型巡天望远镜将产生PB级的恒星光谱数据。 恒星光谱是来自恒星的电磁辐射, 通常由连续谱与吸收线叠加而成, 其差异源于恒星的有效温度、 表面重力加速度以及元素的化学丰度等。 恒星光谱自动分类是天文数据处理的一项重要研究内容, 是研究恒星演化和参数测量的基础。 海量的恒星光谱对分类方法提出了高效、 准确的要求。 传统的人工分类方法存在速度慢、 精度低等缺点, 已经无法满足海量恒星光谱特别是低信噪比恒星光谱自动分类的实际需要, 机器学习算法目前已经被广泛地应用于恒星光谱分类。 恒星光谱的一个显著特征是数据维度较高, 降维不但可以实现特征提取, 而且可以降低计算量, 是光谱分类的首要任务。 传统的线性降维方法如主成分分析仅依据方差对光谱进行降维, 不同类型的光谱在投影到低维特征空间后会出现交叉现象, 而流形学习能够产生优良的分类边界, 很好地避开重叠, 有利于后续的分类。 针对光谱数据维度较高的特点, 研究了光谱数据在高维空间内的分布以及流形学习对高维线性数据降维的原理, 比较了t-SNE和主成分分析两种降维方法对光谱数据降维的效果, 并使用基于属性值相关距离的改进的K近邻算法进行光谱分类, 最终对实验结果进行了分析并使用多种机器学习分类器进行比较和验证。 采用Python语言及Scikit-learn第三方库实现了算法, 对SDSS的12 000条低信噪比的恒星光谱进行实验, 最终实现了光谱数据的高精度自动处理和分类。 实验结果表明, 对于光谱数据的降维处理, 基于流形学习的t-SNE方法能够在高维光谱数据中恢复低维流形结构, 即找出高维空间中的低维流形, 并解出与之对应的嵌入映射, 在降维过程中最大程度地保留不同类别光谱样本之间的差异从而产生明显的分类边界。 特征提取后, 使用机器学习分类器能够在测试数据集上达到满意的分类准确率。 所使用的方法也可以应用于其他的巡天望远镜产生的海量光谱的自动分类以及稀少天体的数据挖掘。
流行学习 恒星光谱分类 数据降维 K近邻算法 Manifold learning Stellar spectral classification Data reduction K-Nearest neighbor algorithm 
光谱学与光谱分析
2020, 40(9): 2913

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!