胡海力 1贺磊 2张勇 1杨振 1[ ... ]张建隆 1,*
作者单位
摘要
1 哈尔滨工业大学 航天学院,黑龙江 哈尔滨 150001
2 哈尔滨新光光电科技股份有限公司,黑龙江 哈尔滨 150080
无人机等弱小目标具有飞行高度低、反射截面小、热信息弱等特点,尤其在低照度背景下,单一成像方式难以实现对弱小目标的探测和识别。实验对比了可见光成像、微光夜视成像、长波红外成像、激光主动照明成像等对弱小目标的成像效果,目的是研究适用于不同照度背景下弱小目标的探测识别方法。外场实验中,被测目标为小型四旋翼无人机,尺寸为290 mm×290 mm×196 mm,实验环境照度在10?2~10?4 lx之间,作用距离范围0.5~2 km。成像实验结果表明:普通可见光系统无法在环境照度低于10?2 lx时成像;环境照度为10?3 lx时,微光夜视和长波红外热系统的识别距离仅为0.5 km;近红外激光(中心波长808 nm)主动照明与微光夜视结合的主动成像方式可增加对弱小目标的识别距离,同等条件下主动照明成像作用距离是被动成像的3倍。
弱小目标 低照度背景 激光主动照明 目标探测识别 weak small target low-light-level background laser active illuminated imaging target detection and recognition 
红外与激光工程
2020, 49(9): 20190569
作者单位
摘要
哈尔滨工业大学航天学院光电子信息科学与技术系,黑龙江哈尔滨 150080
近红外高斯激光束在强激光与材料相互作用、激光清洗、激光燃烧诊断等热点研究领域中发挥着重要的作用。然而,高斯光束能量分布的不均匀性阻碍了这些领域的深入发展。为提高工作效率和测量精度,实际应用中往往期望光束能量在较大工作距离内呈均匀分布,但现有光束整形方法无法同时满足长焦深和高激光耐受功率要求。为此,本文基于非球面像差效应提出并设计了一种新型长焦深高斯激光束均匀化光学系统,系统由非球面光束均匀化系统和球面长焦准直系统两部分组成,所有透镜均采用熔融石英并在其表面镀有增透膜,能够实现 99.9%的光学系统传输效率。系统工作波段为 1064 nm,工作距离为 1000 mm,系统总长为 135.2 mm,耐受激光功率不小于 300 W。设计结果表明:整形后的平顶高斯光束有效焦深为 ±100 mm,光束均匀性≥95%,会聚角为 17.52 mrad,能够满足上述应用场景的实际需求。本文设计的光束整形系统相比于其他激光光束均匀化系统,具有结构简单、易于加工、成本低、焦深长、耐受激光功率高、光束均匀化效果好的特点。
像差效应 长焦深 高斯光束 光束均匀化系统 耐受激光功率 aberration effect, long focal depth, Gaussian beam 
红外技术
2020, 42(4): 320
作者单位
摘要
1 哈尔滨工业大学航天学院光电子信息科学与技术系, 黑龙江哈尔滨 150080
2 哈尔滨工业大学化工与化学学院, 黑龙江哈尔滨 150001
中红外激光器功率的不断提高使得传统红外成像制导**临着前所未有的激光威胁。较高能量的激光会使导引头光机系统内部产生杂散光, 从而干扰导引头正常工作。为增强当前红外成像导引头内部核心器件探测器的抗激光干扰和损伤能力, 本文采用新型高吸收型陶瓷涂层材料增加导引头光机系统对杂散光的吸收能力, 针对高吸收型陶瓷涂层和磨砂玻璃两种漫反射材料, 通过等效实验对比了不同入射激光功率对红外探测器的干扰效果。研究结果表明: 采用普通漫反射材料时, 探测器在功率密度 101.3 mW/cm2处达到饱和; 而采用高吸收型陶瓷涂层材料后, 入射激光在探测器像面上的饱和功率密度阈值增大到 784.5 mW/cm2, 其抗激光干扰能力相比于普通漫反射材料提高了近 8倍。本文研究结果证明了采用高吸收型陶瓷涂层材料有助于增加红外成像导引头内部光机结构的消杂散光能力, 能够有效提升现役导引头抗激光干扰能力, 延长红外制导**的战场生存周期。
红外导引头 激光干扰 高吸收型陶瓷涂层 饱和功率密度阈值 红外探测器 infrared seeker, laser disturbing, high-absorption 
红外技术
2019, 41(10): 935
作者单位
摘要
1 哈尔滨新光光电科技有限公司,黑龙江哈尔滨 150080
2 哈尔滨工业大学,光学目标仿真与测试技术研究所,黑龙江哈尔滨 150080
为实现空空弹导引头的小型化、轻量化设计,采用滚 -仰式导引头总体布局方式,利用反射镜折转光路,选用 J-T制冷型 320×256长波红外探测器作为接收器件,设计了一种高分辨率长波红外成像制导光学系统。设计结果表明,光学系统样机焦距为 100 mm,视场大小为 5.5.×4.4.,在 16 lp/mm处,轴上视场的调制传递函数(MTF值)高于 0.54,轴外传递函数(MTF)高于 0.40,系统畸变小于 2.1%,系统在-45℃~+ 70℃温度范围内具有良好的消热差效果。此外利用光学设计软件对系统进行了杂散光和公差分析,经实测样机,光学系统成像质量优良,各项性能指标满足技术指标要求。
高分辨率 长波红外 滚-仰式导引头 光学系统 消热差 high resolution long wave infrared roll-inverting seeker optical system athermal 
红外技术
2018, 40(12): 1142
张建隆 1,*潘鑫 2贺磊 1杨振 1[ ... ]康为民 1
作者单位
摘要
1 哈尔滨工业大学 光学目标仿真与测试技术研究所,黑龙江 哈尔滨 150080
2 中国兵器工业导航与控制技术研究所,北京 100089
大视角、高分辨率、低畸变光学成像系统是全视角高精度三维测量仪中最为关键的核心器件。现有三维测量仪实际使用过程中不可避免会产生各种误差,因此科学合理地评估和降低全视角高精度三维测量仪的测量误差具有十分重要的科学及工程应用意义。通过多角度、全方面分析定量研究了相机内方位元素标定误差对几何定位误差的影响,以及相机光学系统MTF分析、点扩散函数分析、波像差分析和公差分析对匹配误差产生的影响。研究结果表明,在各种影响三维测量仪光学成像系统测量误差的因素当中,相机的传递函数是影响系统三维定位误差最主要的因素,当系统MTFN值大于0.4 lp/mm、系统几何畸变小于1个像素,PSF能量集中在以3 μm为半径的圆环内(小于1个像素),且PSF峰值达到了0.9时,三维测量仪的定位误差可达到秒级精度。
全视角高精度三维测量仪 相机传递函数 误差分析 三维定位误差 full-view high-precision 3D measuring instrument MTF error analysis three-dimensional positioning error 
应用光学
2018, 39(3): 392

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!