作者单位
摘要
1 辽宁科技学院电气与信息工程学院 机器人工程系,辽宁 本溪 117004
2 华晨宝马汽车有限公司,辽宁 沈阳 110000
3 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春 130033
4 中国科学院大学 材料科学与光电技术学院,北京 100049
报道了利用垂直外腔面发射激光器(Vertical external cavity surface emitting laser,VECSEL)的增益谱与腔模的大失配设计实现VECSEL双波长同时激射的方法,设计了稳定的振荡腔结构,理论预测了这种VECSEL的三种工作状态并进行了实验验证。随着VECSEL泵浦功率增加,增益芯片内部工作温度逐步升高,VECSEL依次出现带边波长激射、双波长激射及腔模波长激射三种工作状态。最初VECSEL的激射波长位于带边模式决定的激光波长(952.7 nm),随着泵浦功率增加,增益芯片热效应增强,腔模波长与带边波长出现模式竞争,此后出现双波长激射现象。双波长峰值强度接近时VECSEL激光输出功率达到359 mW,激光波长分别位于954.2 nm和1 001.2 nm,在该位置附近VECSEL的输出功率曲线呈现明显的二次阈值现象。当泵浦功率持续增加,激光输出波长变为腔模波长激射,激光波长位于1 002.4 nm。在单波长及双波长工作状态下VECSEL的光斑形貌均为高斯形貌的圆形对称激光光束,激光光束发散角半角由5.7°增加到7.9°。这种单芯片双波长输出VECSEL方案未来在抗干扰激光雷达以及频率转换太赫兹激光等方面有着很好的应用潜力。
双波长面发射激光器 模式竞争 激光雷达 频率转换 dual-wavelength lasing mode competition LiDAR frequency conversion 
发光学报
2022, 43(8): 1266
作者单位
摘要
长春理工大学光电工程学院, 吉林 长春 130022
为了解决传统立体显示器成像不满足人眼正常成像规律的问题,同时考虑到穿戴设备兼具质量小、体积小的特点,在计算分析光学系统参数的基础上,结合数字微镜元件(DMD)和压电可变形反射镜(PDM),利用Zemax软件设计出了具有多焦平面投影功能的光学系统。该光学系统由7片透镜组成,总长为200 mm,视场角为40°,采用双远心光路结构。对光学系统的整体分析结果表明,改变PDM的曲率半径,可实现多焦平面的成像。人眼根据自身的调节作用,在特定位置处可观察到由各个焦面位置处(屈光度范围为0~3 m -1)的二维图像重叠所带来的整体三维效果。最后对系统的成像质量进行分析,结果表明该系统在极限分辨率为37 lp/mm时,各视场处的调制传递函数(MTF)均高于0.4,性能良好,满足设计要求。
光学设计 多焦面投影 数字微镜元件 双远心光路 
光学学报
2018, 38(9): 0922002
作者单位
摘要
合肥工业大学 仪器科学与光电工程学院,安徽 合肥 230009
根据微纳米三坐标测量机对测头各项指标的要求,提出了4种测头弹性结构的设计方案。通过力学分析建立测头弹性结构三维刚度模型,应用有限元分析软件ANSYS分别对4种弹性结构的刚度进行仿真计算; 然后,分析讨论了4种弹性结构的性能特点。综合考虑测量刚度、灵敏性及结构紧凑稳定等多种因素,选择十字型结构作为微纳米测量机测头的弹性结构,并对其进行了结构参数的优化和测头刚度各向同性设计。搭建了高精度三维微位移测试平台,对测头的测量范围、线性、位移误差进行了实验验证。仿真分析和实验结果表明,测头的弹性结构满足测量范围40 μm×40 μm×20 μm、测量刚度小于0.5 mN/μm及刚度各向同性的要求,整体测量误差小于100 nm。
坐标测量机 微纳米测量 接触扫描测头 弹性结构设计 有限元分析 Coordinate Measuring Machine(CMM) micro and nano measurement contact scanning probe elastic structure design finite element analysis 
光学 精密工程
2013, 21(10): 2587
作者单位
摘要
合肥工业大学仪器科学与光电工程,安徽 合肥 230009
文章提出了一种基于DVD原理的非接触光学聚焦探头,它由商用DVD读取头改装而成,已经完成设计与制作。实验结果表明,此非接触探头分辨率优于1nm,测量重复性可达12 nm。目前此非接触触发探头已应用于纳米三坐标测量机上。
DVD光学读取头 非接触探头 纳米三坐标测量机 DVD optical pickup head non-contact probe Nano-CMM 
现代显示
2012, 23(12): 35

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!