鞠国豪 1,2,3程正喜 1,*陈永平 1,4,**
作者单位
摘要
1 中国科学院上海技术物理研究所,上海 200083
2 中国科学院大学,北京 100049
3 上海科技大学 信息科学与技术学院,上海 201210
4 南通智能感知研究院,江苏 南通 226000
提出了一种基于0.35 μm高压CMOS工艺的线性雪崩光电二极管(Avalanche Photodiode,APD)。APD采用了横向分布的吸收区-电荷区-倍增区分离(Separate Absorption,Charge and Multiplication,SACM)的结构设计。横向SACM结构采用了高压CMOS工艺层中的DNTUB层、DPTUB层、Pi层和SPTUB层,并不需要任何工艺修改,这极大的提高了APD单片集成设计和制造的自由度。测试结果表明,横向SACM线性APD的击穿电压约为114.7 V。在增益M = 10和M = 50时,暗电流分别约为15 nA和66 nA。有效响应波长范围为450 ~ 1050 nm。当反向偏置电压为20 V,即M = 1时,峰值响应波长约为775 nm。当单位增益(M = 1)时,在532 nm处的响应度约为最大值的一半。
雪崩光电二极管 横向SACM 高压CMOS工艺 击穿电压 avalanche photodiode lateral SACM high voltage CMOS breakdown voltage 
红外与毫米波学报
2022, 41(4): 668
杨成财 1,2,*鞠国豪 1,2,3陈永平 1
作者单位
摘要
1 中国科学院 上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083
2 中国科学院大学,北京 100049
3 上海科技大学 信息科学与技术学院,上海 201210
传统的CMOS图像传感器一般采用基于LV-CMOS工艺的N阱/P型衬底制备的PN光电二极管或者PPD二极管作为光敏元。PIN光敏元具有结电容小、量子效率高的特点。采用HV-CMOS(高压CMOS)工艺可以实现CMOS电路与PIN光敏元的单片集成。本文研究了集成PIN光敏元的CMOS探测器的光电响应特性以及NEP随像素大小和复位电压的变化关系。研究表明,将光敏元从PN光电二极管改为PIN光电二极管后,像素电荷增益可以提高一个数量级左右; 同时,像素的瞬态电荷增益要大于传统认为的1/Cpd,并与二极管的大小以及复位电压紧密相关。研究发现,小像素因其更高的电荷增益和更低的等效噪声,更加适合弱信号下的短积分时间快速探测。若配合微透镜的使用,小像素在微光探测方面可以获得更大的优势。
CMOS图像传感器 PIN光电二极管 3T像素结构 CMOS image sensor HV-CMOS HV-CMOS PIN photodiodes 3T pixel structure 
中国光学
2019, 12(5): 1076
杨成财 1,2,*鞠国豪 1,2,3陈永平 1
作者单位
摘要
1 中国科学院上海技术物理研究所 红外成像材料与器件重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 上海科技大学 信息科学与技术学院, 上海 201210
PIN光电二极管相对于pn结型光电二极管具有结电容小、量子效率高等优点,但采用标准低压CMOS(LV-CMOS)工艺研制的CMOS传感器只能实现基于n阱/p衬底的pn结光敏元与片上电路的集成,高压CMOS(HV-CMOS)工艺的发展为CMOS电路与PIN光敏元列阵的单片集成提供了可能。基于HV-CMOS工艺设计了一种集成PIN光敏元列阵的CMOS传感器,并对器件的光电响应进行了测试评估。结果表明,集成PIN光敏元的CMOS传感器具有更高的像素增益和量子效率,而暗电流、输出摆幅、线性度等特性保持良好。在500~900nm宽波段范围内,器件的量子效率均达到80%以上,在950nm附近的量子效率达到25%,优于采用其他工艺制作的CMOS传感器。
CMOS图像传感器 PIN光电二极管 3T像素结构 量子效率 CMOS image sensor HV-CMOS HV-CMOS PIN photodiodes 3T pixel structure quantum efficiency 
半导体光电
2019, 40(3): 333
作者单位
摘要
1 中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083
2 中国科学院大学,北京 100049
3 上海科技大学 信息科学与技术学院,上海 201210
采用标准CMOS工艺制备的n+-p-π-p+结构的线性APD,其倍增区p层的掺杂分布极大地影响着器件的性能.采用Silvaco仿真软件对倍增区p层进行了设计仿真,研究了p层的注入剂量和注入峰值浓度深度对器件特性的影响.仿真结果表明,设定器件增益为50,在p层的最佳注入剂量为1.82×1012/cm2,峰值浓度深度为2.1 μm左右的最佳工艺条件下,器件的工作电压为73.1 V,过剩噪声因子为4.59,过剩噪声指数在0.34~0.45之间(波长λ=800 nm),优于目前已报道的结果.通过工艺的优化,器件的性能可以得到进一步提高.
标准CMOS工艺 线性APD 掺杂分布 峰值浓度深度 仿真 standard CMOS process linear APD doping distribution depth of peak concentration simulation 
红外与毫米波学报
2018, 37(2): 184
作者单位
摘要
1 中国科学院上海技术物理研究所 红外成像材料与器件重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
在航天遥感领域, 波长在10 μm以上的长波探测器仍以HgCdTe光导型探测器为主, 在红外探测成像方面发挥着重要作用。非均匀性是目前长波光导探测器突出的问题之一, 设计了一种数模混合的非均匀性校正的长波光导探测器读出电路。该电路不仅可以有效地解决线列长波光导探测器电阻非均匀性问题, 还可以增大ROIC输出信号的动态范围, 几乎不增加读出电路功耗。经过仿真测试表明: 非均匀性问题有了明显的改善, 能够使其非均匀性降为0.5%以内, 在常温和低温下都能正常工作。该校正电路不仅能解决当前工程中的关键问题, 还对今后高性能大面阵长波光导探测器读出电路的设计具有重要的指导意义。
非均匀性校正 长波光导 红外探测器 读出电路 nonuniformity correction long wave photoconductive IR detector ROIC 
红外与激光工程
2018, 47(1): 0104001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!