作者单位
摘要
西南交通大学 微电子研究所, 成都 611756
为了进一步提升P-GaN 栅HEMT器件的阈值电压和击穿电压, 提出了一种具有P-GaN栅结合混合掺杂帽层结构的氮化镓高电子迁移率晶体管(HEMT)。新器件利用混合掺杂帽层结构, 调节整体极化效应, 可以进一步耗尽混合帽层下方沟道区域的二维电子气, 提升阈值电压。在反向阻断状态下, 混合帽层可以调节栅极右侧电场分布, 改善栅边电场集中现象, 提高器件的击穿电压。利用Sentaurus TCAD进行仿真, 对比普通P-GaN栅增强型器件, 结果显示, 新型结构器件击穿电压由593 V提升至733 V, 增幅达24%, 阈值电压由0509 V提升至1323 V。
氮化镓高电子迁移率晶体管 增强型 击穿电压 混合帽层 GaN HEMT enhancement-mode breakdown voltage hybrid cap layer 
微电子学
2023, 53(4): 723
作者单位
摘要
无锡华润上华科技有限公司, 江苏 无锡 214061
提出了一种具有分段P型埋层的Triple-RESURF LDMOS(SETR LDMOS)。该结构将传统Triple-RESURF LDMOS(TR LDMOS)中均匀掺杂的P埋层漏端一侧做分段处理,使漂移区中P型杂质从源端到漏端呈现出近似阶梯掺杂的分布。这种优化能够平衡漏端底部剧烈的衬底辅助耗尽效应,提升器件的耐压性能;同时,器件正向导通状态下,对电流的传输路径也没有形成阻碍,能够维持较低的比导通电阻。流片结果表明,在漂移区长度均为65 μm的情况下,SETR LDMOS的击穿电压能达到813 V,比传统TR LDMOS的击穿电压高51 V,且比导通电阻维持在7.3 Ω·mm2。
P型埋层 击穿电压 比导通电阻 P buried layer LDMOS LDMOS breakdown voltage specific on-resistance 
微电子学
2023, 53(1): 134
李冲 1,*杨帅 1刘玥雯 1徐港 1[ ... ]刘云飞 2
作者单位
摘要
1 北京工业大学 信息学部 光电子技术省部共建教育部重点实验室
2 北京工业大学 材料与制造学部 先进半导体光电技术研究所,北京 100124
基于CMOS工艺制备了空穴触发的Si基雪崩探测器(APD),基于不同工作温度下器件的击穿特性,建立空穴触发的雪崩器件的击穿效应模型。根据雪崩击穿模型和击穿电压测试结果,拟合曲线得到击穿电场与温度的关系参数(dE/dT),器件在250~320 K区间内,击穿电压与温度是正温度系数,器件发生雪崩击穿为主,dV/dT=23.3 mV/K,其值是由倍增区宽度以及载流子碰撞电离系数决定的。在50~140 K工作温度下,击穿电压是负温度系数,器件发生隧道击穿,dV/dT=-58.2 mV/K,其值主要受雪崩区电场的空间延伸和峰值电场两方面因素的影响。
硅基雪崩探测器 击穿电压 温度系数 击穿模型 silicon based avalanche detectors breakdown voltage temperature coefficient breakdown mode 
半导体光电
2023, 44(4): 493
作者单位
摘要
1 陕西理工大学机械工程学院,陕西 汉中 723001
2 西北工业集团有限公司,陕西 西安 710043
倍增层对雪崩光电探测器内部载流子的碰撞电离至关重要,因此,采用三元化合物In0.83Al0.17As作为倍增层材料,借助器件仿真工具Silvaco-TCAD,详细探究了In0.83Ga0.17As/GaAs雪崩光电探测器的倍增层厚度及掺杂浓度对其内部电场强度、电流特性和电容特性的影响规律。研究表明,随着倍增层厚度的增加,器件的电场强度和电容呈减小趋势。同时,倍增层掺杂浓度的增大会引起电容和倍增层内的电场强度峰值增加。进一步研究发现,随着倍增层厚度的增加,器件的穿通电压线性增大,击穿电压先减小后增大,但倍增层掺杂浓度的增加会引起器件击穿电压的减小。此外,用电场分布和倍增因子的结合解释了器件穿通电压与击穿电压的变化。
探测器 雪崩光电探测器 倍增层 电场分布 穿通电压 击穿电压 
光学学报
2023, 43(4): 0404001
作者单位
摘要
1 重庆邮电大学 光电工程学院,重庆 400060
2 电子科技大学 电子薄膜与集成器件国家重点实验室,成都 610054
3 中国电子科技集团公司 第五十八研究所, 江苏 无锡 214035
对高压SOI pLDMOS器件总剂量辐射效应进行了研究。分析了不同偏置条件下器件击穿电压的退化机理,并使用TCAD在不同氧化层界面引入固定陷阱电荷,仿真了电离辐射总剂量效应。结果表明,总剂量辐射在FOX和BOX引入辐射陷阱电荷QBOX和QFOX。QFOX增加了漏极附近横向电场,降低了埋氧层电场,使击穿位置由体内转到表面,导致击穿电压退化。QBOX降低了埋氧层电场,降低了埋氧层压降,导致击穿电压退化。
总剂量辐射 击穿电压 辐射陷阱电荷 total-ionizing-dose effect SOI pLDMOS SOI pLDMOS BV radiation trap charge 
微电子学
2022, 52(4): 706
鞠国豪 1,2,3程正喜 1,*陈永平 1,4,**
作者单位
摘要
1 中国科学院上海技术物理研究所,上海 200083
2 中国科学院大学,北京 100049
3 上海科技大学 信息科学与技术学院,上海 201210
4 南通智能感知研究院,江苏 南通 226000
提出了一种基于0.35 μm高压CMOS工艺的线性雪崩光电二极管(Avalanche Photodiode,APD)。APD采用了横向分布的吸收区-电荷区-倍增区分离(Separate Absorption,Charge and Multiplication,SACM)的结构设计。横向SACM结构采用了高压CMOS工艺层中的DNTUB层、DPTUB层、Pi层和SPTUB层,并不需要任何工艺修改,这极大的提高了APD单片集成设计和制造的自由度。测试结果表明,横向SACM线性APD的击穿电压约为114.7 V。在增益M = 10和M = 50时,暗电流分别约为15 nA和66 nA。有效响应波长范围为450 ~ 1050 nm。当反向偏置电压为20 V,即M = 1时,峰值响应波长约为775 nm。当单位增益(M = 1)时,在532 nm处的响应度约为最大值的一半。
雪崩光电二极管 横向SACM 高压CMOS工艺 击穿电压 avalanche photodiode lateral SACM high voltage CMOS breakdown voltage 
红外与毫米波学报
2022, 41(4): 668
作者单位
摘要
1 天津工业大学电子与信息工程学院,天津300384
2 天津环鑫科技发展有限公司,天津300384
垂直双扩散金属-氧化物半导体场效应晶体管(VDMOS)器件是一种以多子为载流子的器件,具有开关速度快、开关损耗小、输入阻抗高、工作频率高以及热稳定性好等特点。提出一款60 V 平面栅VDMOS 器件的设计与制造方法,开发出一种新结构方案,通过减少一层终端层版图的光刻,将终端结构与有源区结构结合在一张光刻版上,并在终端工艺中设计了一种改善终端耐压的钝化结构,通过使用聚酰亚胺光刻胶(PI)钝化工艺代替传统的氮化硅钝化层。测试结果表明产品满足设计要求,以期为其他规格的芯片设计提供一种新的设计思路。
功率器件 垂直双扩散金属-氧化物半导体场效应晶体管(VDMOS) 终端结构 击穿电压 钝化工艺 power device Vertical Double-diffused Metal Oxide Semiconductor terminal structure breakdown voltage passivation process 
太赫兹科学与电子信息学报
2022, 20(4): 402
作者单位
摘要
西南交通大学 电子工程系 集成电路设计实验室, 成都 610000
相比于传统VDMOS, 超结耐压层结构和高k介质耐压层结构VDMOS能实现更高的击穿电压和更低的导通电阻。通过仿真软件, 对3D圆柱形高k VDMOS具有、不具有界面电荷下的各种结构参数对电场分布、击穿电压和比导通电阻的影响进行了系统总结。研究和定性分析了击穿电压和比导通电阻随参数的变化趋势及其原因。对比导通电阻和击穿电压的折中关系进行了优化。该项研究对高k VDMOS的设计具有参考价值。
高介电常数耐压层 界面电荷 击穿电压 比导通电阻 high k voltage sustaining layer interface charge breakdown voltage specific on-resistance 
微电子学
2022, 52(1): 109
作者单位
摘要
重庆大学 电气工程学院 输配电装备及系统安全与新技术国家重点实验室, 重庆 400044
提出了一种新型隐埋缓冲掺杂层(IBBD)高压SBD器件, 对其工作特性进行了理论分析和模拟仿真验证。与常规高压SBD相比, 该IBBD-SBD在衬底上方引入隐埋缓冲掺杂层, 将反向击穿点从常规结构的PN结保护环区域转移到肖特基势垒区域, 提升了反向静电释放(ESD)能力和抗反向浪涌能力, 提高了器件的可靠性。与现有表面缓冲掺杂层(ISBD)高压SBD相比, 该IBBD-SBD重新优化了漂移区的纵向电场分布形状, 在保持反向击穿点发生在肖特基势垒区域的前提下, 进一步降低反向漏电流、减小正向导通压降, 从而降低了器件功耗。仿真结果表明, 新器件的击穿电压为118 V。反向偏置电压为60 V时, 与ISBD-SBD相比, 该IBBD-SBD的漏电流降低了52.2%, 正向导通电压更低。
肖特基势垒二极管 击穿电压 漏电流 正向导通压降 Schottky barrier diode breakdown voltage leakage current forward voltage drop 
微电子学
2021, 51(1): 116
作者单位
摘要
西南交通大学 微电子研究所, 成都 611756
为了得到高击穿电压、高阈值电压的增强型GaN器件,提出了一种P型掺杂GaN(P-GaN)栅极结合槽栅技术的AlGaN/GaN/AlGaN双异质结结构。该器件的阈值电压高达3.4 V,击穿电压达738 V。利用Sentaurus TCAD进行仿真,对比了传统P-GaN栅与P-GaN栅结合槽栅的AlGaN/GaN/AlGaN双异质器件的阈值电压和耐压。结果表明,栅槽深度在5~13 nm范围内变化时,阈值电压随栅槽深度的增大而增大,击穿电压随栅槽深度的增大呈先增大后略减小; 导通电阻随槽栅深度的增大而增大,最小导通电阻为11.3 Ω·mm。
P-GaN 栅极 双异质结 槽栅 阈值电压 击穿电压 P-GaN gate double heterojunction recessed-gate threshold voltage breakdown voltage 
微电子学
2021, 51(3): 404

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!