作者单位
摘要
1 浙江工业大学 计算机科学与技术学院,浙江 杭州 310023
2 浙江工业大学 信息工程学院,浙江 杭州 310023
针对紫外分光光度法(UV法)检测混有干扰物质的硝酸盐氮溶液浓度精度不高的问题,提出一种基于主成分分析(principal component analysis,PCA)和BP神经网络的硝酸盐氮浓度检测方法。通过微型光谱仪物质成分检测系统测得硝酸盐氮试剂在196 nm~631 nm波段的吸光度数据,分为测试集和训练集。通过PCA计算训练集,得到主成分。根据BP算法搭建三层人工神经网络。将所得主成分除以8后输入网络展开训练。训练过程中采用留一法交叉验证。用该模型计算训练集和测试集,所得值与真实浓度的平均相对误差分别为2.411 5%和1.553%。实验结果表明,该方法能较好检测出混有干扰物质的硝酸盐氮溶液浓度。
光谱分析 浓度 神经网络 硝酸盐氮 主成分分析 spectral analysis concentration neural network nitrate nitrogen principal component analysis 
应用光学
2020, 41(4): 761
作者单位
摘要
1 浙江工业大学 计算机科学与技术学院, 杭州 310023
2 浙江工业大学 信息工程学院, 杭州 310023
现有的光学溶解氧浓度检测方法中光路及电路结构复杂,本文提出了一种单路光源的频域荧光寿命的溶解氧检测方法.采用单路光源的光学结构实现水体溶解氧浓度的检测,简化了光路及电路结构,改进了溶解氧浓度检测算法,降低了整体检测过程的计算量.设计对比实验对方法进行验证,实验结果表明:单光源的频域荧光寿命的检测方法与DOP1光学溶解氧分析仪相比,在0~9 mg/L范围内,实际检测误差降低至0.04 mg/L;衡量稳定性的检测标准偏差为0.007 mg/L,同比降低了36%;采用快速傅里叶变换以及改进的溶解氧浓度计算方法,配合优化的电路及光路结构,在达到90%稳态时响应时间平均缩短了12 s,浓度上升和下降时的响应速度分别提升为40%和28%.该方法具有较好的检测精度、稳定性以及响应速度.
环境光学 荧光淬灭 荧光检测 溶解氧浓度 频域分析 快速傅里叶变换 响应时间 Environmental optics Fluorescence quenching Fluorescence detection Dissolved oxygen concentration Frequency-domain analysis Fast Fourier transform Response time 
光子学报
2020, 49(3): 0330002
作者单位
摘要
1 燕山大学电气工程学院河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
2 燕山大学信息科学与工程学院河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
结合光子晶体的局域特性与多孔硅特有的光学特性,提出一种镜像对称多孔硅光子晶体折射率传感结构。基于分层传输矩阵法建立传感理论模型,得出缺陷波长与其基本结构参数的关系。改变多孔硅高低折射率层的结构参数,可使缺陷峰的半峰全宽变窄,进而使其品质因数(Q 值)得到提高。根据传输矩阵理论,对不同浓度甲醇蒸汽进入到该传感结构前后的反射光谱进行理论仿真,得出其光谱特性,推导出由于环境折射率影响引起的传感层等效折射率改变与缺陷峰漂移之间的数学模型,并进行数值模拟分析。结果显示:该传感器结构的Q 值为3114.75,灵敏度为903.9 nm/RIU,可为微型化与高分辨率传感器的设计提供一定的技术参考。
光学器件 折射率 多孔硅光子晶体 镜像对称 缺陷峰 传输矩阵法 
中国激光
2016, 43(4): 0414002
作者单位
摘要
1 燕山大学电气工程学院河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
2 燕山大学信息科学与工程学院河北省特种光纤与光纤传感器重点实验室, 河北 秦皇岛 066004
基于倏逝波理论和光学谐振原理,研究了倏逝波在光子晶体中的存在形式及空气栅光子晶体F-P 腔的折射率传感机理,并建立谐振波长与待测气体折射率的关系模型。当入射光以大于全反射临界角的角度入射到光子晶体中,由于倏逝波的作用,在中心介质层形成F-P 腔并产生谐振,电磁场被局部增强,与待测气体充分作用,从而使该传感结构对待测气体的折射率具有较高的敏感性。利用传输矩阵理论进行数值模拟,结果表明,折射率传感的Q值可达3447.0,灵敏度可达1260.0 nm/RIU,证明该光子晶体F-P 腔折射率传感结构具有很好的传感特性,可为高精度气体折射率传感器的设计与应用提供一定的理论参考。
光学器件 折射率传感 光子晶体 F-P腔 倏逝波 光学谐振 
光学学报
2015, 35(11): 1123001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!