Author Affiliations
Abstract
State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
A high repetition rate, picosecond terahertz (THz) parametric amplifier with a LiNbO3 (LN) crystal has been demonstrated in this work. At a 10 kHz repetition rate, a peak power of 200 W and an average power of 12 μW have been obtained over a wide range of around 2 THz; at a 100 kHz repetition rate, a maximum peak power of 18 W and an average power of 10.8 μW have been obtained. The parametric gain of the LN crystal was also investigated, and a modified Schwarz–Maier model was introduced to interpret the experimental results.
far infrared or terahertz nonlinear optics parametric processes parametric oscillators and amplifiers 
Chinese Optics Letters
2020, 18(5): 051901
作者单位
摘要
上海大学 物理系, 上海 200444
为了实现太赫兹高斯光束与双曲线形金属波导的高效耦合, 设计了一个渐变的椭圆-双曲线形金属波导连接器。此波导连接器的输入端是矩形的, 输出端是椭圆-双曲线形的。在渐变的过程中, 矩形金属波导的TE01模逐渐转变成双曲线形金属波导的椭圆偏振模。根据WKB近似, 这个缓慢渐变的波导消除了反射和散射, TE01模和椭圆偏振模的耦合效率可以高达94%。最终, 经过这个渐变连接器, 高斯光束和双曲线形金属波导的耦合效率可以提高到69.1%。
连接器 波导 远红外或太赫兹 金属光学 connector waveguides far infrared or terahertz metal optics 
红外与激光工程
2019, 48(2): 0203003
作者单位
摘要
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic information, Huazhong University of Science and Technology, Wuhan 430074, China
ultrafast measurements far-infrared or terahertz ultrafast nonlinear optics harmonic generation and mixing 
Frontiers of Optoelectronics
2018, 11(4): 407–412
Author Affiliations
Abstract
1 Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
2 Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
3 Daheng New Epoch Technology Inc., Beijing 100085, China
We report the terahertz (THz) wave generation from a single-color scheme modulated by pre-ionized air plasma via an orthogonal pumping geometry. It is found that the amplitude of the THz signal generated by the pump beam tends to decrease gradually with the increase of the modulation power. We believe that the ponderomotive force plays an important role in the process of the interaction between the pump beam and the pre-ionization beam. The hydrostatic state of the electrostatic separation field caused by the modulation beam will directly affect the generation efficiency of the THz wave. Our results contribute to further understanding of the theoretical mechanism and expanding of the practical applications of THz wave generation and modulation.
040.2235 Far infrared or terahertz 350.5400 Plasmas 
Chinese Optics Letters
2018, 16(11): 110401
Author Affiliations
Abstract
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
4 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
We systematically investigate the influences of the input infrared spectrum, chirp, and polarization on the emitted intense terahertz spectrum and spatial dispersion in lithium niobate via optical rectification. The terahertz yield and emission spectrum depend on both the chirp and spectrum of the input pump laser pulses. We also observe slight non-uniform spatial dispersion using a knife-edge measurement, which agrees well with the original predictions. The possible mechanism is the nonlinear distortion effect caused by high-energy laser pumping. Our study is very important and useful for developing intense terahertz systems with applications in extreme terahertz sciences and nonlinear phenomena.
Nonlinear optics Ultrafast optics Strong field laser physics Far infrared or terahertz 
Photonics Research
2018, 6(10): 10000959
Author Affiliations
Abstract
1 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 Beijing Advanced Innovation Center for Imaging Technology and Key Laboratory of Terahertz Optoelectronics (MoE), Department of Physics, Capital Normal University, Beijing 100048, China
Previous research shows that few-cycle laser (FCL) pulses with low energy and without a bias field can be used to coherently detect terahertz (THz) pulses. As we know, it is very difficult to stabilize the carrier envelope phase (CEP) of FCL pulses, i.e., there are some random fluctuations for the CEP. Here we theoretically investigate the influence of such instability on the accuracy of THz detection. Our results show that although there is an optimum CEP for THz detection, the fluctuations of the CEP will lead to terrible thorns on the detected THz waveform. In order to solve this problem, we propose an approach using two few-cycle laser pulses with opposite CEPs, i.e., their CEPs are differed by π.
040.2235 Far infrared or terahertz 320.7100 Ultrafast measurements 
Chinese Optics Letters
2018, 16(9): 090401
Author Affiliations
Abstract
1 Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
2 Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
3 Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
4 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
5 e-mail: jiaghan@tju.edu.cn
6 e-mail: weili.zhang@okstate.edu
Dielectric metasurfaces have achieved great success in realizing high-efficiency wavefront control in the optical and infrared ranges. Here, we experimentally demonstrate several efficient, polarization-independent, all-silicon dielectric metasurfaces in the terahertz regime. The metasurfaces are composed of cylindrical silicon pillars on a silicon substrate, which can be easily fabricated using etching technology for semiconductors. By locally tailoring the diameter of the pillars, full control over abrupt phase changes can be achieved. To show the controlling ability of the metasurfaces, an anomalous deflector, three Bessel beam generators, and three vortex beam generators are fabricated and characterized. We also show that the proposed metasurfaces can be easily combined to form composite devices with extended functionalities. The proposed controlling method has promising applications in developing low-loss, ultra-compact spatial terahertz modulation devices.
Far infrared or terahertz Metamaterials Phase shift 
Photonics Research
2018, 6(1): 01000024
Author Affiliations
Abstract
1 Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology Tianjin, Ministry of Education of China, Tianjin 300072, China
2 Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
3 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
4 e-mail: weili.zhang@okstate.edu
Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies.
Integrated optics devices Surface waves Far infrared or terahertz 
Photonics Research
2018, 6(1): 01000018
Author Affiliations
Abstract
1 School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
5 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
We systematically study the optimization of highly efficient terahertz (THz) generation in lithium niobate (LN) crystal pumped by 800 nm laser pulses with 30 fs pulse duration. At room temperature, we obtain a record optical-to-THz energy conversion efficiency of 0.43% by chirping the pump laser pulses. Our method provides a new technique for producing millijoule THz radiation in LN via optical rectification driven by joule-level Ti:sapphire laser systems, which deliver sub-50-fs pulse durations.
190.7110 Ultrafast nonlinear optics 040.2235 Far infrared or terahertz 
Chinese Optics Letters
2018, 16(4): 041901
Author Affiliations
Abstract
1 Centre for Optoelectronics and Biophotonics, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
2 Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, Singapore 138634, Singapore
3 School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
4 Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
5 State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
6 School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
We demonstrate terahertz (THz) frequency laser emission around 3.2 THz from localized modes in one-dimensional disordered grating systems. The disordered structures are patterned on top of the double-metal waveguide of a THz quantum cascade laser. Multiple emission peaks are observed within a frequency range corresponding to the bandgap of a periodic counterpart with no disorder, indicating the presence of mode localization aided by Bragg scattering. Simulations and experimental measurements provide strong evidence for the spatial localization of the THz laser modes.
Multiple scattering Far infrared or terahertz Semiconductor lasers, quantum cascade 
Photonics Research
2018, 6(2): 02000117

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!