作者单位
摘要
齐鲁工业大学(山东省科学院), 山东省科学院海洋仪器仪表研究所, 山东 青岛 266000
水体的遥感反射比光谱(Rrs(λ))是海洋水色遥感反演海洋生物地球光学参数的关键, 其定义是离水辐亮度与恰好水面之上的向下辐照度之比。 海洋水色卫星传感器接收到的总信号中90%是大气的贡献, 海洋水体贡献的离水辐亮度不足10%, 因此对接收的信号进行大气校正获得高精度的水体遥感反射比信号是海洋光学遥感的关键技术之一。 基于大量高质量的现场高光谱遥感反射比数据的基础上建立的Rrs(λ)光谱数据的质量评价体系QA(quality assurance), 可以通过计算Rrs的得分情况(QA score)很好地识别出有问题或可能错误的Rrs(λ)光谱。 GOCI(geostationary ocean color imager)是搭载在全球第一颗对地静止卫星COMS(communication ocean and meteorological satellite)上的主要传感器, 由韩国海洋卫星中心(KOSC)发射, 其高观测频次(8景观测数据/天)使生物地球化学参数的日变化监测成为可能。 KOSC研发了GDPS (GOCI data processing system)软件专门用于GOCI数据处理, 包括大气校正。 到目前为止已为全球用户免费提供GDPS1.1, GDPS1.2, GDPS1.3, GDPS1.4, GDPS1.4.1, GDPS2.0六个版本。 应用QA Score评价体系对于GDPS1.2, GDPS1.3, GDPS1.4.1, GDPS2.0四个版本在黄海海域处理得到的GOCI遥感反射比光谱数据的质量进行了评比。 结果发现GDPS1.2的Rrs数据被视为无效的数据量明显大于GDPS1.3, GDPS1.4.1和GDPS2.0的处理结果; GDPS2.0的Rrs数据QA得分情况要差于GDPS1.2, GDPS1.3和GDPS1.4.1; GDPS1.3和GDPS1.4.1的数据处理结果基本相同, 这与GDPS1.4在GDPS1.3的基础上只进行了软件模块化优化处理且修复了一些小问题的结果相吻合。 基于该研究, 黄海海域使用GOCI Rrs数据时, 如果Rrs波段比是首要考虑因素(如反演叶绿素a浓度)且对有效数据数量要求不高, 可以使用GDPS1.2版本进行大气校正; 如果更关心的是某个波段Rrs值, 则使用GDPS2.0进行大气校正更合适。
海洋水色遥感 黄海 遥感反射比 Ocean color remote sensing GOCI GDPS Yellow Sea Remote-reflectance sensing GOCI GDPS 
光谱学与光谱分析
2021, 41(7): 2233
李正浩 1陈志钊 1王力彦 3,*孙德勇 1,2,**[ ... ]王胜强 1,2
作者单位
摘要
1 南京信息工程大学海洋科学学院, 江苏 南京 210044
2 江苏省海洋环境探测工程技术研究中心, 江苏 南京 210044
3 国家海洋信息中心, 天津 300171
基于2016—2018年渤海、黄海和东海7个航次中采集的实测遥感反射率和浮游植物色素浓度数据,利用静止海洋水色成像仪(GOCI)遥感反射率产品建立中国近海水体中总叶绿素a、叶绿素b、总叶绿素c、光保护类胡萝卜素和光合有效类胡萝卜素浓度的反演模型,并进一步得到2014—2018年渤海、黄海和东海各色素浓度分布图。研究结果显示:采用遥感反射率波段组合建立的反演模型可实现色素浓度的定量反演,建立的模型反演精度较高(R2>0.72)。由卫星反演结果可以看出,浮游植物色素浓度整体呈由近岸向离岸水域递减的趋势,并存在显著的季节变化特征。本文建立的浮游植物色素浓度反演模型,可为深入认识我国近海水体浮游植物种群结构及时空变化规律提供方法支撑。
海洋光学 叶绿素 类胡萝卜素 遥感反演 GOCI 时空分布 近海水体 
光学学报
2021, 41(2): 0201001
作者单位
摘要
1 中国石油大学(华东), 山东 青岛 266580
2 国家海洋环境监测中心, 辽宁 大连 116023
针对光学遥感手段无法探测云雾覆盖下绿潮分布区域这一现状问题, 本文着力于开展绿潮时空分布的监测研究, 获取了近三年五月中旬到八月中旬的GOCI(geostationary ocean color imager)数据, 基于该数据进行绿潮范围提取、绿潮漂移路径分析、精细化云区域提取和统计云覆盖情况, 分析云量覆盖对利用静止轨道卫星监测绿潮的影响程度, 进而从探测能力和动态能力两方面论证利用静止轨道卫星开展绿潮业务化监测的可行性。
绿潮 云量 探测能力 动态能力 green tide GOCI GOCI cloud cover detecting ability dynamic capabilities 
激光生物学报
2018, 27(2): 155
宋挺 1,2龚绍琦 3刘军志 4,5顾征帆 2[ ... ]吴蔚 2
作者单位
摘要
1 南京信息工程大学环境科学与工程学院, 江苏 南京 210044
2 无锡市环境监测中心站, 江苏 无锡 214121
3 南京信息工程大学地理与遥感学院, 江苏 南京 210044
4 南京师范大学虚拟地理环境教育部重点实验室, 江苏 南京 210023
5 江苏省地理信息资源开发与利用协同创新中心, 江苏 南京 210023
高分四号卫星是我国首颗高空间分辨率地球静止卫星, 在浑浊二类水体的遥感定量监测方面应用潜力很大。 为评价高分四号多光谱数据经大气校正后水体反射率的精度, 以太湖为研究区, 使用同步MODIS数据辅助的Gordon单次散射改进算法, 对2016年7月21日和2016年8月17日两景高分四号多光谱数据进行大气校正, 并通过与地面同步实测光谱数据、 以及地球静止水色卫星GOCI数据大气校正结果的协同比对, 验证高分四号多光谱数据的大气校正效果, 为该卫星产品的水色遥感应用提供借鉴和参考。 结果表明, 红光B4波段校正精度最高, 平均绝对误差(MAPE)为10.71%; 绿光B3波段校正精度次高, MAPE为13.21%; 近红外B5波段校正精度次低, MAPE为33.06%; 蓝光B2波段校正精度最低, MAPE为53.55%。 其中B3, B4和B5波段校正精度高于GOCI, 主要原因在于高分四号的空间分辨率远高于GOCI, 混合像元导致的精度误差相对较小, 充分显示了高分四号作为一颗高空间分辨率地球静止卫星在水色遥感方面的优势; 而B2波段低于GOCI, 表明高分四号的蓝光波段尚有改进空间, 今后有必要对该波段进行重新定标等处理; 在未得到有效处理的情况下, 水色遥感应用应尽量避开该波段。 总体而言, 高分四号多光谱数据校正精度较高, 可以较好的应用于内陆二类浑浊水体的定量遥感监测。
高分四号 大气校正 太湖 GF-4 satellite Atmospheric correction GOCI GOCI Taihu Lake 
光谱学与光谱分析
2018, 38(4): 1191
作者单位
摘要
1 环境保护部卫星环境应用中心,北京 100094
2 中国科学院遥感与数字地球研究所,北京 100101
海洋卫星COMs-1(Communication, Ocean & Meteorological Satellite-1)上携带的GOCI(Geostationary Ocean Color Imager)传感器以海洋监测为主,也具备较好 的陆地监测潜力,但传感器陆地辐射特性存在偏差。为改善GOCI陆地辐射特性,基于MODIS数据,对GOCI可见光 和近红外波段开展交叉辐射定标,弥补场地定标成本较高、定标参数更新周期长的不足,拓展其陆地定量遥感监测能力。交叉辐射定标中,考虑了GOCI和MODIS传感 器相应波段光谱响应函数之间的匹配; 通过辐射传输模拟,订正两传感器观测角度对辐射定标的影响;通过选取两传感器同一过境时刻的数据,降低太阳角度对 辐射定标的影响,提高交叉定标精度。通过MODIS数据模拟的GOCI相应波段的表观辐亮度与GOCI实测结果比对, R2大于0.88。对定标结果进行初步验证,表明交 叉辐射定标后, GOCI陆地上的辐射特性满足基本的定量遥感需求。
交叉辐射定标 光谱 几何 cross-calibration Geostationary Ocean Color Imager GOCI MODIS MODIS spectrum geometry 
大气与环境光学学报
2016, 11(6): 412
包颖 1,2田庆久 1,2陈旻 3,4吕春光 1,2
作者单位
摘要
1 南京大学国际地球系统科学研究所, 江苏 南京 210023
2 江苏省地理信息技术重点实验室, 江苏 南京 210023
3 香港中文大学太空与地球信息科学研究所, 香港 99077
4 江苏省地理信息资源开发与利用协同创新中心, 江苏 南京 210023
叶绿素a浓度(Chlorophyll-a: Chl-a)是内陆水体重要的水质参数之一, 遥感数据为其提供了大范围、 多时相的监测信息, 然而由于内陆湖泊水色要素复杂的光学性质及较大的时空差异, 传统的遥感影像及单一的Chl-a反演模型在应用中存在着局限性。 因此本研究以太湖为研究区, 时间分辨率1小时的静止海洋水色卫星Geostationary Ocean Color Imager(GOCI)为数据源, 在基于层次聚类法实现归一化实测光谱反射率分类的基础上, 利用光谱角测距匹配实现2012年5月6日(08:16—15:16) 8景GOCI太湖影像的水体分类; 并针对不同水体类型分别建立基于GOCI影像的Chl-a反演模型, 实现不同类型水体的Chl-a浓度反演。 结果表明, 太湖水体光谱可分为四类, 类型1光谱体现出漂浮藻类的特征, 可将其作为蓝藻水华的判定依据; 类型2—4体现的特征分别为水体含有较高Chl-a浓度、 较高悬浮物浓度及相对较低Chl-a较低悬浮物浓度; 并且类型2—4与分类前相比, 其分类模型估算的Chl-a浓度误差均得到了不同程度的提高, 平均相对误差分别降低了7%, 12.3%和15.9%; 此外, GOCI影像反演结果不仅可以很好地反映Chl-a浓度的空间分布状况, 也能反映出太湖Chl-a浓度的日变化差异及规律, 表现出了其在富营养化污染动态监测及预警中的应用潜力。 该方法在GOCI影像中的应用, 在提高Chl-a浓度反演精度的同时也提高了模型在实际应用中的适用性, 为日后太湖水体不同时刻Chl-a浓度的精确估算提供了基础。
分类 叶绿素a浓度 日变化 太湖 GOCI GOCI Classification Chlorophyll-a concentration Diurnal variation Taihu Lake 
光谱学与光谱分析
2016, 36(8): 2562
作者单位
摘要
1 南京信息工程大学地理与遥感学院, 江苏 南京 210044
2 南京信息工程大学海洋科学学院, 江苏 南京 210044
悬浮颗粒物粒径是重要的海洋光学参数,在以悬浮颗粒物为主的黄渤海海域,对水体生物、化学过程等起着重要的作用,该参数的卫星遥感反演也对海洋光学与水色遥感研究具有重要意义。利用2014年5月和11月的黄渤海47组实测数据,建立了基于静止海洋水色卫星(GOCI)波段设置的遥感反射率(Rrs)与悬浮颗粒物中值粒径(D50)反演模型,555 nm 波段幂函数的反演效果最佳,决定系数R2为0.72, 绝对误差SMAPE 为6.35%,经实测数据检验,均方根误差SRMSE约为0.17,相对误差变化范围为-5%~5%。对反演模型引入5%误差进行敏感性检验,绝对误差、均方根误差分别控制在2%以及0.002以内,具有较好的稳定性。将此模型运用于2013年6月GOCI卫星数据,反演出悬浮颗粒物中值粒径D50的时空分布图,呈现从近岸向远海粒径逐渐变大的趋势。
遥感 悬浮颗粒物粒径 反演算法 GOCI卫星 海洋光学 
光学学报
2015, 35(9): 0901008
作者单位
摘要
华东师范大学河口海岸学国家重点实验室, 上海 200062
通过用Shen等<参考文献原文>的方法对Terra/MODIS、FY-3A/MERSI、COMS/GOCI传感器入瞳处的辐射亮度即天顶辐射亮度进行反演计算,得出了遥感反射率Rrs与悬浮颗粒物(Suspended Particulate Matter, SPM)浓度的数据, 并将上述反演与Envisat/MERIS反演进行了对比。结果表明,MODIS、MERSI、GOCI 传感器的天顶辐射亮度与MERIS的线性相关性均较好;GOCI、MODIS与MERIS的Rrs一致,MERSI与MERIS 的Rrs 相差较大,尤其在近红外区域。MODIS、MERSI和GOCI反演的SPM数据与MERIS反演的绝对偏差分别为36%、31%和26%。对于长江口、杭州湾及江苏沿岸的高浊度水体,3种传感器反演的SPM均与MERIS反演的SPM相近。对于离岸较远的低浊度水体,仅GOCI能很好地体现。
河口海岸 悬浮泥沙浓度 遥感反演 FY-3A/MERSI FY-3A/MERSI Terra/MODIS Terra/MODIS COMS/GOCI COMS/GOCI estuary and coast suspended particulate matter remote sensing inversion 
红外
2014, 35(4): 31

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!