Jiajun Wang 1†Peishen Li 2Xingqi Zhao 1Zhiyuan Qian 2[ ... ]Jian Zi 1,4,5,6,*
Author Affiliations
Abstract
1 State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai, China
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing, China
3 College of Physics, Chongqing University, Chongqing, China
4 Institute for Nanoelectronic devices and Quantum computing, Fudan University, Shanghai, China
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
6 Shanghai Research Center for Quantum Sciences, Shanghai, China
Optical bound states in the continuum (BICs) have recently stimulated a research boom, accompanied by demonstrations of abundant exotic phenomena and applications. With ultrahigh quality (Q) factors, optical BICs have powerful abilities to trap light in optical structures from the continuum of propagation waves in free space. Besides the high Q factors enabled by the confined properties, many hidden topological characteristics were discovered in optical BICs. Especially in periodic structures with well-defined wave vectors, optical BICs were discovered to carry topological charges in momentum space, underlying many unique physical properties. Both high Q factors and topological vortex configurations in momentum space enabled by BICs bring new degrees of freedom to modulate light. BICs have enabled many novel discoveries in light–matter interactions and spin–orbit interactions of light, and BIC applications in lasing and sensing have also been well explored with many advantages. In this paper, we review recent developments of optical BICs in periodic structures, including the physical mechanisms of BICs, explored effects enabled by BICs, and applications of BICs. In the outlook part, we provide a perspective on future developments for BICs.
bound state in the continuum light trapping topological charge polarization vortex momentum space light field manipulation photonic crystal slab nanophotonics 
Photonics Insights
2024, 3(1): R01
Author Affiliations
Abstract
Light trapping photonic crystal (PhC) patterns on the surface of Si solar cells provides a novel opportunity to approach the theoretical efficiency limit of 32.3%, for light-to-electrical power conversion with a single junction cell. This is beyond the efficiency limit implied by the Lambertian limit of ray trapping ~ 29%. The interference and slow light effects are harnessed for collecting light even at the long wavelengths near the Si band-gap. We compare two different methods for surface patterning, that can be extended to large area surface patterning: 1) laser direct write and 2) step-&-repeat 5× reduction projection lithography. Large area throughput limitations of these methods are compared with the established electron beam lithography (EBL) route, which is conventionally utilised but much slower than the presented methods. Spectral characterisation of the PhC light trapping is compared for samples fabricated by different methods. Reflectance of Si etched via laser patterned mask was ~ 7% at visible wavelengths and was comparable with Si patterned via EBL made mask. The later pattern showed a stronger absorbance than the Lambertian limit6.Light trapping photonic crystal (PhC) patterns on the surface of Si solar cells provides a novel opportunity to approach the theoretical efficiency limit of 32.3%, for light-to-electrical power conversion with a single junction cell. This is beyond the efficiency limit implied by the Lambertian limit of ray trapping ~ 29%. The interference and slow light effects are harnessed for collecting light even at the long wavelengths near the Si band-gap. We compare two different methods for surface patterning, that can be extended to large area surface patterning: 1) laser direct write and 2) step-&-repeat 5× reduction projection lithography. Large area throughput limitations of these methods are compared with the established electron beam lithography (EBL) route, which is conventionally utilised but much slower than the presented methods. Spectral characterisation of the PhC light trapping is compared for samples fabricated by different methods. Reflectance of Si etched via laser patterned mask was ~ 7% at visible wavelengths and was comparable with Si patterned via EBL made mask. The later pattern showed a stronger absorbance than the Lambertian limit6.
silicon solar cells laser ablation light trapping Lambertian limit 
Opto-Electronic Advances
2022, 5(9): 210086
作者单位
摘要
1 Department of Electrical and Electronics Engineering, Shiraz University of Technology, Modarres Blvd, 71557-13876 Shiraz, Iran
2 Faculty of Electrical and Electronics Engineering, University of Sistan and Baluchestan, Daneshgah Blvd, 98613-35856 Zahedan, Iran
Ultra-thin solar cells (SCs) Light trapping Stadium silicon nanowire (NW) Optical resonators Diffraction 
Frontiers of Optoelectronics
2022, 15(1): s12200
作者单位
摘要
合肥工业大学机械工程学院,安徽 合肥 230009
设计了一种半圆形前置与梯形后置双界面的光栅结构的单晶硅薄膜太阳能电池,利用时域有限差分法对该结构和对照组进行了模拟计算,通过分析短路电流密度和吸收光谱可知,双界面光栅结构的光捕获性能优于单界面光栅结构,利用电磁场分布对该结构在长波段(750~1100 nm)的吸收增强机理进行了分析。此外,针对前置半圆形后置梯形光栅结构,进一步优化了后置梯形光栅的左右斜率与同周期下前后光栅的偏移程度,结果表明非规则的梯形结构具有较好的光捕获表现,通过吸收效率云图也能发现偏移程度在40 nm时效果最佳。通过计算分析,短路电流密度的最优值达到了20.17 mA/cm2,相较于平板结构的短路电流密度提高了58.1%,研究结果对于薄膜太阳能电池的光栅结构设计具有一定的指导意义。
薄膜 太阳能电池 时域有限差分法 光捕获 半圆形光栅 梯形光栅 短路电流密度 
激光与光电子学进展
2022, 59(7): 0731001
作者单位
摘要
中国科学院重庆绿色智能技术研究院 微纳制造与系统集成中心,重庆 400714
红外探测器在**侦查、遥感、通信、精确制导和航空航天等领域发挥着关键作用,受到世界各国长期关注,具有重要的研究价值和应用前景。微纳结构与传统半导体探测器集成后能够有效提高光子耦合效率和等效光程,突破传统体材料的吸收极限,提高光电器件的量子效率并降低器件的暗电流,为高性能红外探测器的研究提供了全新的技术手段。文中围绕近年来各种不同类型的微纳结构增强型红外探测器的研究展开综述。首先,介绍了微纳结构增强型红外探测器的基本原理,根据微纳结构的材料和功能不同,进行了分类和对比;其次,分别从介质型、表面金属型和三维等离子腔型等方面对微纳结构在红外探测器上的研究进展进行了阐述;最后,对基于微纳结构增强型红外探器的发展趋势进行了总结和展望。
红外探测 微纳结构 光子捕获 局域增强 等离子体激元 infrared detection micro-nano structure light trapping local enhancement plasma plasmon 
红外与激光工程
2022, 51(1): 20210826
作者单位
摘要
1 天津理工大学理学院, 天津 300384
2 天津工业大学电子与信息工程院, 天津 300387
采用严格耦合波分析方法系统研究了平面波照明的亚波长梯形金属槽阵列的光学异常吸收现象。模拟了结构参数的改变对亚波长金属梯形槽阵列吸收效率的影响,并引入Fabry-Perot半解析模型对计算结果进行分析。研究结果表明,亚波长金属梯形槽阵列的吸收增强现象主要来自槽内模式的Fabry-Perot共振效应及阵列结构间表面等离激元的能量传导耦合作用。当槽深满足Fabry-Perot共振条件,且阵列周期满足表面等离激元激发条件时,金属梯形槽吸收率峰值接近1。与矩形槽相比,选择适当的梯形槽斜边倾角可以在保证吸收率的同时,放宽槽深的加工容忍度,有助于降低器件加工难度,提升器件设计可行性。
表面光学 表面等离激元 光陷效应 光学异常吸收 严格耦合波分析 亚波长金属梯形槽阵列 Fabry-Perot模型 
激光与光电子学进展
2019, 56(20): 202416
作者单位
摘要
景德镇陶瓷大学机械与电子工程学院, 江西 景德镇 333403
采用射频磁控溅射法,在不同溅射功率下沉积ZnO∶W薄膜层55 min,然后通入体积分数为5%的氢气,并保持溅射参数不变,表面氢化处理8 min,获得了表面具有绒面结构的ZnO∶W透明导电薄膜。对样品的显微形貌、结构和表面绒度等性能进行了测试与分析,结果表明:在200 W的溅射功率条件下,氢化处理8 min获得的ZnO∶W样品表面绒度达到92.82, 同时具备优异的导电性能(电阻率均值3.93×10 -4 Ω·cm)。这种表面绒面结构有望进一步提高ZnO透明导电电极电池的转换效率。
薄膜 ZnO∶W透明导电薄膜; 磁控溅射 氢化处理 绒度结构 陷光效应 
光学学报
2018, 38(5): 0531001
作者单位
摘要
华南师范大学 物理与电信工程学院, 广州 510006
近年来, 具有自然界中天然媒质所不具备的特殊性质的电磁超材料在很多领域引起了广泛关注。零折射率超材料(ZRIM)是一种相对介电常数和磁导率为零的特征材料, 在光学领域具有很多独特的特征, 主要表现在波长拉伸、相位一致以及隧道效应等方面。介绍了几种典型的ZRIM结构以及ZRIM结构中实现的性质, 包括无限大波长、均匀场分布等。讨论了ZRIM结构的实现在物理光学中的重要应用, 比如定向发射、发射增强、边界态分析以及光的捕获。基于零折射率的性质以及特征的研究, 为新器件开发、新光学元件的基础研究提供了相应的参考和指导。
材料 零折射 介电常数 磁导率 隧道效应 发射 光捕获 materials zero refractive index permittivity permeability tunneling effect emission light trapping 
激光技术
2018, 42(3): 289
作者单位
摘要
1 Centre for Micro-Photonics, Faculty of Science, Engineering and Industrial Sciences, Swinburne University of Technology,Hawthorn VIC 3122, Australia
2 Artificial-Intelligence Nanophotonics Laboratory, School of Science, RMIT University, Melbourne VIC 3001, Australia
Light trapping is of critical importance for constructing high efficiency solar cells. In this paper, we first reviewed the progress we made on the plasmonic light trapping on Si wafer solar cells, including Al nanoparticle (NP)/SiNx hybrid plasmonic antireflection and the Ag NP light trapping for the long-wavelength light in ultrathin Si wafer solar cells. Then we numerically explored the maximum light absorption enhancement by a square array of Ag NPs located at the rear side of ultrathin solar cells with wavelength-scale Si thickness. Huge absorption enhancement is achieved at particular long wavelengths due to the excitation of the plasmon-coupled guided resonances. The photocurrent generated in 100 nm thick Si layers is 6.8 mA/cm2, representing an enhancement up to 92% when compared with that (3.55 mA/cm2) of the solar cells without the Ag NPs. This study provides the insights of plasmonic light trapping for ultrathin solar cells with wavelength-scale Si thickness.
solar cells solar cells light trapping light trapping plasmonic plasmonic ultrathin Si ultrathin Si wavelength-scale wavelength-scale 
Frontiers of Optoelectronics
2016, 9(2): 277
作者单位
摘要
青海大学新能源光伏产业研究中心, 青海 西宁 810016
为了提高晶体硅(c-Si)薄膜太阳能电池对光的俘获能力,提出了一种可以显著增强光吸收的电池结构,该结构由减反射层、有源层和背反射镜组成。基于有效折射率调制的基本原则和严格耦合波理论,通过数值计算与仿真讨论了不同结构层的光学特性,计算了减反射层的透射率、背反射镜的反射率和经过优化后的c-Si薄膜太阳能电池的吸收率。在AM1.5G(地表面上接受到的以48°入射的太阳光谱,包含漫反射)照射下,当入射角小于75°,有源层的厚度为20 μm时,太阳能电池在400~850 nm、850~1000 nm、1000~1100 nm波长范围内平均吸收率分别为85.7%、49%、14%,有效弥补了c-Si薄膜太阳能电池近红外波段吸收不足的缺陷。
光伏 晶体硅薄膜 太阳能电池 表面等离子体激元 陷光 金属纳米光栅 
激光与光电子学进展
2016, 53(8): 080401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!