作者单位
摘要
1 深圳大学 材料学院,广东 深圳 518060
2 韩山师范学院 材料科学与工程学院,广东 潮州 521041
基于化学气相沉积(CVD)法制备的铯铅溴钙钛矿薄膜具有优异的光电特性,然而薄膜通常存在CsPbBr3和CsPb2Br5两个不同的相结构区域。本文通过CVD法制备了铯铅溴钙钛矿薄膜,并利用X射线衍射(XRD)、扫描电镜(SEM)、电子能谱仪(EDS)及荧光光谱仪研究了反应气压与N2流量对其中的CsPb2Br5相结构的影响。实验结果表明,反应气压的变化对CsPb2Br5相结构无影响;与此不同,随着N2流量的减少,薄膜中部分CsPb2Br5相结构逐渐转变为CsPbBr3相结构,其发光也由以~630 nm为主的宽带发射转变为以~530 nm为主的窄带发射。实验表明,N2流量是调控CsPb2Br5相结构和发光特性的有效手段。
化学气相沉积 铯铅溴钙钛矿薄膜 CsPb2Br5相结构 chemical vapor deposition(CVD) cesium lead bromide perovskite film CsPb2Br5 phase 
发光学报
2023, 44(4): 634
作者单位
摘要
福州大学 物理与信息工程学院,福州350108
以原子层低温沉积技术(ALD)制备的氧化锌(ZnO)作为薄膜晶体管载流子传输层,将其与光电敏感性极高的CsPbBrI2全无机钙钛矿薄膜复合进一步研制出光电晶体管用于光电探测。氧化锌薄膜晶体管可在150 ℃低温条件下制备且无需高温退火,同时,CsPbBrI2钙钛矿薄膜也可以在低温工艺下制备。结果显示,CsPbBrI2/ZnO光电探测器表现出较好的性能,可对365 nm至600 nm波长的光辐射有光响应。在500 nm波长的光照射下,最大响应度和探测率分别可达2×103 A/W和3×1014 Jones。CsPbBrI2/ZnO光电晶体管的瞬态响应显示出250 ms 的上升时间和200 ms 的下降时间,并且在长时间测量后瞬态行为保持不变。
薄膜晶体管 氧化锌 钙钛矿薄膜 光电探测器 TFT ZnO perovskite film photodetector 
光电子技术
2022, 42(4): 274
作者单位
摘要
中国计量大学 光学与电子科技学院,浙江 杭州 310018
全无机铯铅卤钙钛矿因其优异的光电性能受到广泛关注。然而,薄膜较差的稳定性和制备中大量昂贵且有毒有机溶剂的使用,严重阻碍了其商业化应用进程。在本工作中,水溶液被用作配制含氯化钠(NaCl)的钙钛矿前驱液的溶剂。通过一步溶液法获得原位生长的NaCl/CsPbBr3钙钛矿复合薄膜,并在该过程中引入二甲基亚砜(DMSO)溶液来优化其晶体结构及光学性能。研究表明,NaCl和DMSO的协同作用可以调控复合薄膜中晶粒的形貌、提高相纯度并增强荧光发射。当DMSO和前驱体溶液体积比为1∶2时,复合薄膜呈现出最佳的绿光发射,荧光量子效率达48.2%。此外,得益于NaCl的有效复合及优化的晶体结构,所制备的复合薄膜具有增强的稳定性。该设计思路有利于制备柔性、大面积和高稳定性显示用荧光转换薄膜。
钙钛矿薄膜 原位合成 氯化钠 发光性能 稳定性 perovskite film in-situ synthesis sodium chloride luminescence properties stability 
发光学报
2022, 43(8): 1188
作者单位
摘要
南京理工大学 化学与化工学院, 南京 210094
研究钙钛矿晶体缺陷对于推动钙钛矿太阳能电池的发展至关重要。缺陷不仅会引起大量非辐射复合, 而且会造成器件稳定性下降。为降低材料缺陷对光伏性能的影响, 有必要深入了解钙钛矿薄膜缺陷的种类及抑制方法。根据电子特性, 缺陷可分为富电子缺陷和缺电子缺陷。利用Lewis酸碱理论, 富电子缺陷可以被Lewis酸钝化, 而缺电子缺陷可以被Lewis碱或离子液体钝化。这些钝化功能添加剂可在钙钛矿成膜过程中加入, 或对薄膜表面进行后处理。本文通过总结近年报道的缺陷钝化案例, 直观地呈现了添加剂的设计策略及缺陷钝化对光伏性能的影响,最后, 提出开发多功能钝化剂、大面积钝化策略与先进电荷传输层的建议, 期望为钙钛矿太阳能电池的发展提供助力。
钙钛矿薄膜 缺陷 钝化 太阳能电池 综述 perovskite film defect passivation solar cell review 
无机材料学报
2021, 37(2): 129
作者单位
摘要
上海大学 新型显示技术及应用集成教育部重点实验室, 上海 200072
近年来, 金属卤化物蓝光钙钛矿发光二极管(Perovskite light-emitting diodes, PeLEDs)的发展十分迅速。然而, 氯/溴混合的蓝光钙钛矿在电场作用下容易发生卤素离子迁移, 致使发光光谱发生红移。光谱的不稳定性已严重地阻碍了蓝光PeLEDs的商业应用。本文通过在钙钛矿前驱体中引入三氟乙酸铯(CsTFA)来提高CsPbClBr2晶体的成核密度, 诱导形成了小晶粒的钙钛矿发光薄膜, 进而增加了钙钛矿薄膜的致密度。更重要的是, CsTFA中的碳氧双键(C=O)可以有效钝化CsPbClBr2晶粒晶界处的缺陷, 抑制卤素阴离子发生离子迁移, 极大地提升蓝光PeLEDs的光谱稳定性。在10 V的电压下, PeLEDs的发光光谱仍可以保持非常稳定。此外, 对比参比器件, PeLEDs的最大亮度和最高外量子效率也分别提高了31倍和8倍。
蓝光钙钛矿薄膜 发光二极管 三氟乙酸铯 稳定性 blue perovskite film light-emitting diodes trifluoroacetate stability 
液晶与显示
2021, 36(1): 123
Author Affiliations
Abstract
1 National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510640, China
2 Foshan Nationstar Optoelectronics Company Ltd., Foshan 528000, China.
Perovskite light emitting diodes (PeLEDs) have attracted considerable research attention because of their external quantum efficiency (EQE) of >20% and have potential scope for further improvement. However, compared to red and green PeLEDs, blue PeLEDs have not been extensively investigated, which limits their commercial applications in the fields of luminance and full-color displays. In this review, blue-PeLED-related research is categorized by the composition of perovskite. The main challenges and corresponding optimization strategies for perovskite films are summarized. Next, the novel strategies for the design of device structures of blue PeLEDs are reviewed from the perspective of transport layers and interfacial layers. Accordingly, future directions for blue PeLEDs are discussed. This review can be a guideline for optimizing perovskite film and device structure of blue PeLEDs, thereby enhancing their development and application scope.
perovskite light emitting diodes perovskite film device structure blue LEDs 
Opto-Electronic Advances
2021, 4(2): 02200019
作者单位
摘要
深圳大学,光电子学研究所,深圳 518061
钙钛矿材料优异的光电性能使钙钛矿太阳能电池成为目前发展速度最快的光伏技术之一。近期的研究发现无晶界的单晶钙钛矿薄膜拥有更低的缺陷密度、更高的载流子迁移率、更长的载流子复合寿命,并且还有较高的稳定性和更宽的光吸收范围,因此有望制备出更高效且更稳定的钙钛矿太阳能电池。本文简要介绍了单晶钙钛矿太阳电池的基本结构及其发展历程,着重介绍了有关单晶钙钛矿薄膜和块状单晶钙钛矿的制备方法,并且对不同方法制备的单晶钙钛矿太阳能电池的效率进行了比较,最后对单晶钙钛矿太阳能电池当前存在的问题以及未来发展进行了简要分析和展望。
单晶钙钛矿 钙钛矿太阳能电池 单晶钙钛矿薄膜 块状单晶钙钛矿 制备方法 single crystal perovskite perovskite solar cell single crystal perovskite film bulk single crystal perovskite preparation method 
人工晶体学报
2020, 49(12): 2389
作者单位
摘要
北京印刷学院, 北京 102600
近年来, 以有机无机杂化铅卤钙钛矿为吸光层的薄膜太阳能电池受到了广泛的关注, 不到十年时间其光电转换效率已经从3.8%提高到了23%, 这主要归因于有机铅卤钙钛矿材料光吸收系数高, 带隙合适并易于调控, 电子-空穴扩散长度长等优点。 2016年GrtzelL等人利用低气压快速去除薄膜前驱体溶剂的方法, 获得了高质量的甲脒和溴离子掺杂钙钛矿薄膜。 相比于其他传统的溶液制备方法, 这种方法能够很好的解决大面积均匀性的问题, 为高效率、 大面积钙钛矿太阳电池产业化提供了可能。 钙钛矿薄膜的成份、 结构及其光学性能对于太阳电池的器件性能起决定性作用, 因此在该制备技术下, 研究不同掺杂种类钙钛矿薄膜对光学性质的影响具有积极的意义。 利用真空闪蒸溶液技术制备了3种成分的钙钛矿薄膜, 利用扫描电镜、 X射线衍射, 吸收光谱和荧光光谱等表征手段对薄膜的形貌、 结构和光学性质进行了研究。 结果表明, 该技术可以用于制备均匀致密、 无针孔的高质量甲脒、 溴离子掺杂和氯离子掺杂的钙钛矿薄膜(成分分别为(FAPbI3)0.85(MAPbBr3)0.15, MA3PbI3和MAPb(IxCl1-x)3), 薄膜中晶粒的尺寸分别为500, 100和200 nm左右; 薄膜的形成过程为溶剂中的DMSO与钙钛矿配位, 并在真空闪蒸过程中快速形成相对稳定中间相, 经过加热后, 薄膜中的DMSO被去除并形成钙钛矿晶体, 结构为四方相; 甲脒、 溴离子和氯离子掺杂的薄膜对可见光有强烈的吸收作用, 薄膜吸收边均在750 nm左右; 薄膜的掺杂对带隙宽度没有明显影响, 3种成份的薄膜带隙宽度位于1.6 eV左右; 甲基胺碘化铅的荧光发射峰在765 nm, 甲脒和溴离子掺杂后发光峰位红移至774 nm, 氯离子掺杂后薄膜峰位处于761 nm, 有微弱的蓝移, 且强度出现下降。 这可能是晶粒尺寸和薄膜内部缺陷变化导致的。
真空闪蒸法 钙钛矿薄膜 光学特性 Vaccum-flash method Perovskite film Optical property 
光谱学与光谱分析
2020, 40(1): 294

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!