Qiannan Jia 1,2Wei Lyu 1,2Wei Yan 1,2,*Weiwei Tang 1,2,3,*[ ... ]Min Qiu 1,2,*
Author Affiliations
Abstract
1 Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
2 Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
3 College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
4 Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
Light carries energy and momentum, laying the physical foundation of optical manipulation that has facilitated advances in myriad scientific disciplines, ranging from biochemistry and robotics to quantum physics. Utilizing the momentum of light, optical tweezers have exemplified elegant light–matter interactions in which mechanical and optical momenta can be interchanged, whose effects are the most pronounced on micro and nano objects in fluid suspensions. In solid domains, the same momentum transfer becomes futile in the face of dramatically increased adhesion force. Effective implementation of optical manipulation should thereupon switch to the “energy” channel by involving auxiliary physical fields, which also coincides with the irresistible trend of enriching actuation mechanisms beyond sole reliance on light-momentum-based optical force. From this perspective, this review covers the developments of optical manipulation in schemes of both momentum and energy transfer, and we have correspondingly selected representative techniques to present. Theoretical analyses are provided at the beginning of this review followed by experimental embodiments, with special emphasis on the contrast between mechanisms and the practical realization of optical manipulation in fluid and solid domains.
optical manipulation optical force adhesion force photothermal effects multiphysics 
Photonics Insights
2023, 2(2): R05
作者单位
摘要
1 德国吕贝克大学生物医学光学研究所,德国 吕贝克23562
2 西安交通大学生命学院生物医学光子学与传感研究所,陕西 西安 710049
多光子激发荧光成像技术因低侵入性、强穿透力、高信噪比和高空间分辨率在生物医学光学领域得到广泛的应用,同时也成为最重要的研究工具之一。在多光子成像中过量的光子密度或激光功率会引起生物组织光损伤。光损伤决定了成像所能使用的激光功率的上限。光损伤强度与激光、组织光学参数有关,其背后的作用机制可分为光化学作用和光热作用。重点论述了光损伤的基本原理和形成机制,阐述了光损伤分析数学模型。讨论和分析了不同组织、不同波长下光损伤的一些研究进展。总结了光损伤规律:无色素组织双光子成像中光损伤以光化学作用为主,色素组织双光子成像中光损伤以光热作用为主,三光子深层组织成像中光损伤很可能来自光化学和光热协同作用。展望了降低光损伤和优化成像参数的可行策略。
生物光学 多光子激发荧光成像 光损伤 光毒性 光化学作用 光热作用 
中国激光
2023, 50(3): 0307102
Author Affiliations
Abstract
1 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Plasmonic structural colors have plenty of advantages over traditional colors based on colorants. The pulsed laser provides an important method generating plasmonic structural colors with high efficiency and low cost. Here, we present plasmonic color printing Al nanodisc structures through curvature-driven shape transition. We systematically study the mechanism of morphologic evolution of the Al nanodisc below the thermal melting threshold. A multi-pulse-induced accumulated photothermal effect and subsequent curvature-driven surface atom diffusion model are adopted to explain the controllable shape transition. The shape transition and corresponding plasmonic resonances of the nanodisc can be independently and precisely modulated by controlled irradiations. This method opens new ways towards high-fidelity color prints in a highly efficient and facile laser writing fashion.
photothermal effects color subwavelength structures surface plasmons 
Chinese Optics Letters
2021, 19(5): 053602
Author Affiliations
Abstract
Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
The changes of mechanical properties and biological activities of monomeric erythrocytes are studied using optical tweezers micromanipulation technology. Firstly, the mechanical properties of irradiated erythrocyte membranes are obtained. Weaker power laser irradiation can delay the decay of the mechanical properties of erythrocytes and promote the biological activity of erythrocytes, while higher power laser irradiation damages erythrocytes. The stronger the laser irradiation is, the more obvious and rapid the damage will be. The temperature of the cell surface will be changed by regulating the laser power and irradiation time, so the biological functions of erythrocyte can be controlled. Secondly, the finite element simulation of the temperature change on the cell surface under the condition of laser irradiation is carried out using simulation software, and the precise temperature of the cell surface irradiated cumulatively by a laser with different powers is obtained. Finally, the processes of abscission, unfolding, and denaturation of hemoglobins in erythrocytes at different temperatures due to the photothermal effect are analyzed using the model. The mechanism of laser irradiation on the elasticity of erythrocyte membranes is also obtained.
170.4520 Optical confinement and manipulation 140.6810 Thermal effects 350.4855 Optical tweezers or optical manipulation 350.5340 Photothermal effects 
Chinese Optics Letters
2019, 17(6): 061701
Author Affiliations
Abstract
1 Advanced Photonics Center, Southeast University, Nanjing 210096, China
2 School of Physics and Electronics, Central South University, Changsha 410012, China
Understanding the nonlinear optical effect of novel materials plays a crucial role in the fields of photonics and optoelectronics. Herein, we theoretically and experimentally investigate the simultaneous presence of third-order locally refractive nonlinearity and thermally induced nonlocal nonlinearity saturation. We present analytical expressions for the closed-aperture Z-scan trace and the number of spatial self-phase modulation (SSPM) rings, which allows one to unambiguously and conveniently separate the contributions of local and nonlocal nonlinear refraction in the case that both effects occur simultaneously. As a test, we study both the local and thermally induced nonlocal nonlinear refraction in fullerene/toluene solution by performing continuous-wave Z-scan and SSPM measurements at two different wavelengths. This work enriches the understanding of the physical mechanism of the optical nonlinear refraction effect in solution dispersions of nanomaterials, which can be exploited for nonlinear photonic devices.
190.4420 Nonlinear optics, transverse effects in 190.4870 Photothermal effects 
Chinese Optics Letters
2019, 17(6): 061901
Author Affiliations
Abstract
1 College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian 350007, P. R. China
2 Department of Cardiovascular Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350000, P. R. China
3 Biophotonics Research Laboratory Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, Oklahoma 73034, USA
Interstitial laser immunotherapy (ILIT) is designed to use photothermal and immunological interactions for treatment of metastatic cancers. The photothermal effect is crucial in inducing anti-tumor immune responses in the host. Tissue temperature and tissue optical properties are important factors in this process. In this study, a device combining interstitial photoacoustic (PA) technique and interstitial laser photothermal interaction is proposed. Together with computational simulation, this device was designed to determine temperature distributions and tissue optical properties during laser treatment. Experiments were performed using ex-vivo porcine liver tissue. Our results demonstrated that interstitial PA signal amplitude was linearly dependent on tissue temperature in the temperature ranges of 20 600C, as well as 65 800C, with a different slope, due to the change of tissue optical properties. Using the directly measured temperature in the tissue around the interstitial optical fiber diffusion tip for calibration, the theoretical temperature distribution predicted by the bioheat equation was used to extract optical properties of tissue. Finally, the three-dimensional temperature distribution was simulated to guide tumor destruction and immunological stimulation. Thus, this novel device and method could be used for monitoring and controlling ILIT for cancer treatment.
Photoacoustic imaging photothermal effects temperature 
Journal of Innovative Optical Health Sciences
2018, 11(1): 1750011
Author Affiliations
Abstract
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
Photothermal/photoacoustic (PT/PA) spectroscopy provides useful knowledge about optical absorption, as well as the thermal and acoustical properties of a liquid sample. For microfluidic biosensing and bioanalysis where an extremely small volume of liquid sample is encapsulated, simultaneous PT/PA detection remains a challenge. In this work, we present a new optofluidic device based on a liquid-core optical ring resonator (LCORR) for the investigation of PT and PA effects in fluid samples. A focused 532 nm pulsed light optically heats the absorptive fluid in a capillary to locally create a transient temperature rise, as well as acoustic waves. A 1550 nm CW laser light is quadrature-locked to detect the resonance spectrum shift of the LCORR and study thermal diffusion and acoustic wave propagation in the capillary. This modality provides an optofluidic investigative platform for biological/biochemical sensing and spectroscopy.
230.5750 Resonators 350.5340 Photothermal effects 
Chinese Optics Letters
2017, 15(7): 072301
Author Affiliations
Abstract
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Science, P.O. Box 603, Beijing 100190, China
We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge2Sb2Te5 (GST). The novel perfect absorber scheme consists of an array of high-index strong-absorbance GST square resonators separated from a continuous Au substrate by a low-index lossless dielectric layer (silica) and a high-index GST planar cavity. Three absorption peaks with the maximal absorbance up to 99.94% are achieved, owing to the excitation of plasmon-like dipolar or quadrupole resonances from the high-index GST resonators and cavity resonances generated by the GST planar cavity. The intensities and positions of the absorption peaks show strong dependence on structural parameters. A heat transfer model is used to investigate the temporal variation of temperature within the GST region. The results show that the temperature of amorphous GST can reach up to 433 K of the phase transition temperature from room temperature in just 0.37 ns with a relatively low incident light intensity of 1.11 × 108 W∕m2, due to the enhanced ultra-broadband light absorbance through strong plasmon resonances and cavity resonance in the absorber. The study suggests a feasible means to lower the power requirements for photonic devices based on a thermal phase change via engineering ultra-broadband light absorbers.
Metamaterials Metamaterials Photothermal effects Photothermal effects Surface plasmons Surface plasmons Microcavities Microcavities Absorption Absorption Ultrafast devices Ultrafast devices 
Photonics Research
2016, 4(4): 04000146
Author Affiliations
Abstract
High power second harmonic generation (SHG) in MgO-doped LiNbO3 waveguides is investigated using a three-dimensional (3D) coupled thermo-optical model. Simulations performed for a 1 111.6-nm fundamental laser show the influence of the absorptions and the thermally induced dephasing on the conversion efficiencies of the different waveguides. The onset of the thermally induced dephasing effect for each waveguide is also indicated. As a result of high light intensity in the waveguide, nonlinear absorptions are identified as the possible main factors in efficiency losses in specific cases.
190.2620 Harmonic generation and mixing 190.4870 Photothermal effects 190.4390 Nonlinear optics, integrated optics 
Chinese Optics Letters
2011, 9(12): 121901
Author Affiliations
Abstract
1 Key Laboratory of Biomedical Information Engineering of Ministry of Education and School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
2 Life Science Research Center, School of Electronic Engineering, Xidian University, Xi’an 710071, China
The irradiation of cells combined with the immunoconjugate of gold nanoparticles by the short pulse laser can make the plasma membrane be transiently permeabilized, which can be used to transfer exogenous molecules into the cells. We explore this technique as a novel gene transfection method for floating cells. Three different floating cells exposed to the laser are selectively transfected with fluorescein isothiocyanatedextran, antibody, and green fluorescent protein (GFP) coding plasmids, and the viability of cells are determined by propidium iodide. For fluorescein isothiocyanate-dextran, the best transfection efficiency of 65% is obtained; for the antibody, it is 74%; whereas for the green fluorescent protein coding plasmids, a very small transfection efficiency is gained. If the transfection efficiency is improved, gold nanoparticles will be very useful as mediator for gene transfection in living cells.
纳米金颗粒 细胞膜通透性 激光转染 170.2520 Fluorescence microscopy 140.3440 Laser-induced breakdown 350.5340 Photothermal effects 
Chinese Optics Letters
2009, 7(10): 898

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!