Author Affiliations
Abstract
1 Jinan University, College of Physics & Optoelectronic Engineering, Institute of Nanophotonics, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Guangzhou, China
2 Tsinghua University, Shenzhen International Graduate School, State Key Laboratory of Chemical Oncogenomics, Shenzhen, China
3 Jinan University, College of Life Science and Technology, Guangzhou, China
Narrowband photodetection is an important measurement technique for material analysis and sensing, for example, nondispersive infrared sensing technique. Both photoactive material engineering and nanophotonic filtering schemes have been explored to realize wavelength-selective photodetection, while most devices have a responsive bandwidth larger than 2% of the operating wavelength, limiting sensing performance. Near-infrared photodetection with a bandwidth of less than 0.2% of the operating wavelength was demonstrated experimentally in Au/Si Schottky nanojunctions. A minimum linewidth of photoelectric response down to 2.6 nm was obtained at a wavelength of 1550 nm by carefully tailing the absorptive and radiative loss in the nanostructures. Multiple functions were achieved on chip with the corrugated Au film, including narrowband resonance, light harvesting for sensing and photodetection, and electrodes for hot electron emission. Benefiting from such a unity integration with in situ photoelectric conversion of the optical sensing signal and the ultranarrowband resonance, self-contained on-chip biosensing via simple intensity interrogation was demonstrated with a limit of detection down to 0.0047% in concentration for glucose solution and 150 ng / mL for rabbit IgG. Promising potential of this technique is expected for the applications in on-site sensing, spectroscopy, spectral imaging, etc.
plasmonics hot electron sensor photodetector spectroscopy 
Advanced Photonics
2024, 6(2): 026007
作者单位
摘要
北京信息科技大学 仪器科学与光电工程学院,北京100192
为了深入研究表面修饰余弦凹槽的亚波长结构对太赫兹波透射特性的调控规律,提出一种表面修饰余弦凹槽的太赫兹亚波长金属Cu狭缝结构,基于时域有限差分法,对亚波长金属Cu狭缝结构的太赫兹波透射光谱特性进行模拟。仿真结果表明,通过改变金属Cu狭缝结构上下表面余弦凹槽的结构排布、数量、周期、深度及狭缝深度、宽度等参量,实现了对太赫兹波透射强度的调控。
太赫兹 表面等离子 余弦凹槽 亚波长结构 terahertz, surface plasmonics, cosine groove, sub- 
光通信技术
2023, 47(5): 0045
Author Affiliations
Abstract
1 Department of Chemistry, Universidad Técnica Particular de Loja, 110160 Loja, Ecuador
2 UNICARIBE Research Center, University of Calabria, I-87036 Rende, CS, Italy
3 Grupo de Investigación en Materiales Avanzados (GIMA), Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, Ecuador
4 Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, Ecuador
5 Faculty of Mechanical Engineering, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba 060155, Ecuador
6 INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, I-00044 Frascati, Italy
Germanene nanostrips (GeNSs) have garnered significant attention in modern semiconductor technology due to their exceptional physical characteristics, positioning them as promising candidates for a wide range of applications. GeNSs exhibit a two-dimensional (buckled) honeycomb-like lattice, which is similar to germanene but with controllable bandgaps. The modeling of GeNSs is essential for developing appropriate synthesis methods as it enables understanding and controlling the growth process of these systems. Indeed, one can adjust the strip width, which in turn can tune the bandgap and plasmonic response of the material to meet specific device requirements. In this study, the objective is to investigate the electronic behavior and THz plasmon features of GeNSs (≥100 nm wide). A semi-analytical model based on the charge-carrier velocity of freestanding germanene is utilized for this purpose. The charge-carrier velocity of freestanding germanene is determined through the GW approximation (vF m·s?1). Within the width range of 100 to 500 nm, GeNSs exhibit narrow bandgaps, typically measuring only a few meV. Specifically, upon analysis, it was found that the bandgaps of the investigated GeNSs ranged between 29 and 6 meV. As well, these nanostrips exhibit q-like plasmon dispersions, with their connected plasmonic frequency (≤30 THz) capable of being manipulated by varying parameters such as strip width, excitation plasmon angle, and sample quality. These manipulations can lead to frequency variations, either increasing or decreasing, as well as shifts towards larger momentum values. The outcomes of our study serve as a foundational motivation for future experiments, and further confirmation is needed to validate the reported results.
nanostrips carrier velocity germanene plasmonics electronics 
Journal of Semiconductors
2023, 44(10): 102001
Hui Zhang 1,2†Lei Feng 1,2†Fengyue Wang 1Mingze Liu 1[ ... ]Ting Xu 1,2,*
Author Affiliations
Abstract
1 National Laboratory of Solid-State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Interfacial solar steam generation (ISSG) is a novel and potential solution to global freshwater crisis. Here, based on a facile sol-gel fabrication process, we demonstrate a highly scalable Janus aramid nanofiber aerogel (JANA) as a high-efficiency ISSG device. JANA performs near-perfect broadband optical absorption, rapid photothermal conversion and effective water transportation. Owning to these features, efficient desalination of salty water and purification of municipal sewage are successfully demonstrated using JANA. In addition, benefiting from the mechanical property and chemical stability of constituent aramid nanofibers, JANA not only possesses outstanding flexibility and fire-resistance properties, but its solar steaming efficiency is also free from the influences of elastic deformations and fire treatments. We envision JANA provides a promising platform for mass-production of high-efficiency ISSG devices with supplementary capabilities of convenient transportation and long-term storage, which could further promote the realistic applications of ISSG technology.
plasmonics interfacial solar steam generation broadband optical absorption aerogel 
Opto-Electronic Advances
2023, 6(5): 220061
张景朝 1罗晓清 1,*徐晓峰 1骆又麟 1[ ... ]王新林 1,2,**
作者单位
摘要
1 南华大学电气工程学院超快微纳技术与激光先进制造湖南省重点实验室,湖南 衡阳 421001
2 南华大学机械工程学院,湖南 衡阳 421001
数值研究了由同心C3型孔和圆环孔单元结构组成的复合超表面在近红外波段内的表面等离子体三重法诺共振效应与光学传感现象。研究结果表明,通过改变C3单元结构的对称性破缺不仅能够诱导产生可调的多重法诺共振效应,还能构建基于该效应的自参考光学传感。此外,通过改变圆环单元结构的内半径能够实现基于法诺凹陷深度的辐射监测传感。该研究为设计紧凑、可调谐的法诺共振光子器件提供了新的视角,同时可将周期性亚波长金属纳米结构扩展至生物传感和光通信领域的相关应用。
光电子学 表面等离子体光子学 表面等离子体 光学传感和传感器 
激光与光电子学进展
2023, 60(9): 0925001
Author Affiliations
Abstract
1 Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin, China
2 Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin, China
3 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, USA
Surface plasmons (SPs) are electromagnetic surface waves that propagate at the interface between a conductor and a dielectric. Due to their unique ability to concentrate light on two-dimensional platforms and produce very high local-field intensity, SPs have rapidly fueled a variety of fundamental advances and practical applications. In parallel, the development of metamaterials and metasurfaces has rapidly revolutionized the design concepts of traditional optical devices, fostering the exciting field of meta-optics. This review focuses on recent progress of meta-optics inspired SP devices, which are implemented by the careful design of subwavelength structures and the arrangement of their spatial distributions. Devices of general interest, including coupling devices, on-chip tailoring devices, and decoupling devices, as well as nascent SP applications empowered by sophisticated usage of meta-optics, are introduced and discussed.
surface plasmons metamaterials metasurfaces plasmonics metadevices 
Photonics Insights
2023, 2(1): R02
Author Affiliations
Abstract
State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
The lateral geometry and material property of plasmonic nanostructures are critical parameters for tailoring their optical resonance for sensing applications. While lateral geometry can be easily observed by a scanning electron microscope or an atomic force microscope, characterizing materials properties of plasmonic devices is not straightforward and requires delicate examination of material composition, cross-sectional thickness, and refractive index. In this study, a deep neural network is adopted to characterize these parameters of unknown plasmonic nanostructures through simple transmission spectra. The network architecture is established based on simulated data to achieve accurate identification of both geometric and material parameters. We then demonstrate that the network training by a mixture of simulated and experimental data can result in correct material property recognition. Our work may indicate a simple and intelligent characterization approach to plasmonic nanostructures by spectroscopic techniques.
plasmonics soft nanoimprint lithography deep neural network nanostructure characterization 
Chinese Optics Letters
2023, 21(1): 010004
Author Affiliations
Abstract
1 Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
We propose a chip-integratable cylindrical vector (CV) beam generator by integrating six plasmonic split ring resonators (SRRs) on a planar photonic crystal (PPC) cavity. The employed PPC cavity is formed by cutting six adjacent air holes in the PPC center, which could generate a CV beam with azimuthally symmetric polarizations. By further integrating six SRRs on the structure defects of the PPC cavity, the polarizations of the CV beam could be tailored by controlling the opening angles of the SRRs, e.g., from azimuthal to radial symmetry. The mechanism is governed by the coupling between the resonance modes in SRRs and PPC cavity, which modifies the far-field radiation of the resonance mode of the PPC cavity with the SRR as the nano-antenna. The integration of SRRs also increases the coupling of the generated CV beam with the free-space optics, such as an objective lens, promising its further applications in optical communication, optical tweezer, imaging, etc.
vector beams photonic crystal plasmonics integrated photonics 
Chinese Optics Letters
2023, 21(3): 033601
作者单位
摘要
合肥工业大学计算机与信息学院, 安徽 合肥 230601
人们借助等离激元结构, 可以在亚波长范围内获得、操控局域放大的光场。它与非线性光学结合, 衍生出非线性等离激元。等离激元二次谐波因其卓越特性, 近年在理论和应用方面均有较大突破。基于流体动力学模型介绍了等离激元结构二次谐波理论, 总结了其发展与应用的报道, 包括等离激元共振增强二次谐波效率、基于磁场洛伦兹力的二次谐波效应、对二次谐波辐射方向和频率的调控, 以及等离激元二次谐波在结构检测、传感、成像等领域的应用。最后, 对等离激元二次谐波研究领域可能的发展方向进行了展望。
非线性光学 等离激元 二次谐波 超材料 超表面 nonlinear optics plasmonics second-harmonic generation metamaterials metasurface 
光学与光电技术
2022, 20(4): 19
作者单位
摘要
南京大学 物理学院和固体微结构物理国家重点实验室,南京 210093
亚波长人工微纳结构,诸如超构材料和超构表面等,可以实现很多天然材料所不具备的新颖光学性质,为电磁波的操控提供有效手段。但基于静态结构而研制出的光学材料和器件往往只具有固定的光学功能,难以应对复杂多变的实际应用需求。近年来,人们将二氧化钒等相变材料引入人工微纳结构,实现了一系列可调光学材料和器件,其性能可实时改变和动态控制。本文回顾了二氧化钒的结构、相变机制及其物理特性等研究,展示了热、电、光等激发方式对二氧化钒相变的调控,系统总结了基于二氧化钒相变实现动态可调亚波长光学材料和器件的研究进展,期望推动发展新型亚波长动态可调的光电功能材料和器件。
超构材料 等离激元 动态调控 二氧化钒相变 超构表面 Metamaterials Plasmonics Dynamical tuning Phase transition of vanadium dioxide Metasurfaces 
光子学报
2022, 51(5): 0551304

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!