骆鹏 1韦玮 1,2,*兰桂莲 1陈溶 1[ ... ]韩根全 3
作者单位
摘要
1 重庆大学 光电工程学院 光电技术及系统教育部重点实验室,重庆 400044
2 重庆大学 资源与安全学院 煤矿灾害动力学与控制国家重点实验室,重庆 400044
3 西安电子科技大学 微电子学院 宽带隙半导体技术国家重点学科实验室,西安 710071
针对单层黑磷表面等离激元器件存在吸光效率低的难题,提出了一种基于石墨烯/黑磷异质结构的各向异性表面等离激元器件,系统研究了其共振光谱及红外传感特性。所设计的石墨烯/黑磷异质结构和非对称类法珀腔结构能够有效提高器件的吸光效率,通过优化器件中谐振腔的厚度将器件在xy偏振方向上的吸光效率提高至95.54%和97.44%。此外,通过改变入射光的偏振方向动态调控器件的共振波长,实现了对8 nm厚聚环氧乙烷分子v(COC)sr(CH2a振动模式的选择性探测,其最高增强倍数分别为88和155。该各向异性表面等离激元器件具有工作波段可调谐、增强倍数高等优点,在痕量物质分析中具有广阔的应用前景。
表面等离激元 偏振选择型器件 各向异性光学材料 红外光谱 光学传感器 石墨烯 黑磷 Surface plasmons Polarization-selective devices Anisotropic optical materials infrared Spectroscopy Optical sensing and sensors Graphene Black phosphorus 
光子学报
2021, 50(10): 1024001
Author Affiliations
Abstract
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, School of Physics and Engineering, Qufu Normal University, Qufu 273165, China
2 College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
3 College of Precision Instrument & Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
4 Key Laboratory of Opto-electronics Information and Technical Science, Ministry of Education, Tianjin University, Tianjin 300072, China
The polarization of a D-shaped fiber is modulated after immersing it in magnetic fluid (MF) and applying a magnetic field. Theoretical analysis predicts that magneto-optical dichroism of MF plays a key role in light polarization modulation. During light polarization modulation, the evanescent wave polarized parallel to the magnetic field has greater loss than its orthogonal component. Light polarization of a D-shaped fiber with a wide polished surface can be modulated easily. High concentration MF and a large magnetic field all have great ability to modulate light polarization.
fiber optics components polarization-selective devices magneto-optic systems magneto-optical materials 
Chinese Optics Letters
2020, 18(1): 010601
作者单位
摘要
Electronics and Communication Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
birefringence dispersion polarization maintaining photonic crystal fiber (PCF) polarization-selective devices polarization 
Frontiers of Optoelectronics
2019, 12(2): 165–173
Author Affiliations
Abstract
1 Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
We propose and experimentally demonstrate a wideband linear polarization converter in a reflection mode operating from 2.4 to 4.2 THz with conversion efficiency of more than 80%. Our device can expand the applications to a higher frequency band. A numerical simulation is performed for this metamaterial converter, which shows a good agreement with experimental results. Importantly, a concise and intuitive calculating model is proposed for the Fabry–Pérot cavity. The theoretical results indicate that the underlying reason for the enhanced polarization conversion is the additional phase difference induced by the resonance of the meta-structure and multiple reflections within the Fabry–Pérot cavity.
310.5448 Polarization, other optical properties 310.6628 Subwavelength structures,nanostructures 310.6805 Theory and design 240.5445 Polarization-selective devices 
Chinese Optics Letters
2019, 17(9): 093101
Author Affiliations
Abstract
1 School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan 430074, China
2 Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
We have investigated the whole polarization-extinction-ratio (PER) spectrum and annealing properties of 45°-tilted fiber gratings (45°-TFGs). Experimental results show the PER spectrum of 45°-TFGs is a Gaussian-like profile and covers a 540 nm bandwidth from 1260 to 1800 nm, in which the bandwidth with PER greater than 10 dB is over 250 nm. The output polarization distribution of 45°-TFGs was analyzed by employing a bulk linear polarizer, and the results show a perfect figure “8”, which indicates that the 45°-TFG is a type of linear polarizer. Moreover, the annealing property of 45°-TFGs was measured up to 700°C, in which the PER of the grating started to decrease at 300°C and reached the minimum at 700°C. Based on these results, the 45°-TFGs can be used as an ultra-wide bandwidth in-fiber polarizing device.
060.2340 Fiber optics components 230.5440 Polarization-selective devices 230.1150 All-optical devices 050.2770 Gratings 
Chinese Optics Letters
2019, 17(5): 050601
Author Affiliations
Abstract
School of Physics and Opto-electronics Engineering, Ludong University, Yantai 264025, China
We propose an approach for tuning the three-dimensional polarization of a focusing subwavelength spot by a high numerical aperture objective. The incident beams are composed of a radially polarized beam, an azimuthally polarized beam, and a linearly polarized beam with three different weighting factors, respectively. A specially designed adjustable amplitude angular selector is also inserted at the back aperture of the objective for tuning the polarization azimuthally. It is shown that any desired overall polarization orientation can be obtained. We calculated the overall polarization orientation in the focal volume. It is found that the polar angle of the overall polarization orientation can be arbitrarily tuned by the combination of a radially polarized beam and a linearly polarized beam with different weighting factors, and the azimuthal angle can be tuned by rotating the orientation of the linearly polarized beam azimuthally.
050.1940 Diffraction 130.5440 Polarization-selective devices 
Chinese Optics Letters
2018, 16(1): 010501
Author Affiliations
Abstract
School of Engineering and Information Technology, Charles Darwin University, Darwin, NT 0909, Australia
New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator (MZM) to alter the amplitude of the light traveling on the slow axis of a fiber into the modulator with little changes in the fast-axis light amplitude. Another is based on adjusting the input DC voltages of a dual-polarization MZM operating in the reverse direction, which enables independent control of the two input orthogonal linearly polarized light amplitudes. Experimental results demonstrate that more than 30 dB difference in slow- and fast-axis light power can be obtained by controlling an MZM input DC voltage, and over 24 dB independent power adjustment for light traveling on the slow and fast axes into a dual-polarization MZM.
230.0250 Optoelectronics 230.5440 Polarization-selective devices 230.2090 Electro-optical devices 
Chinese Optics Letters
2018, 16(4): 042301
Author Affiliations
Abstract
1 Center of Material Science, National University of Defense Technology, Changsha 410073, China
2 China State Key Laboratory on Advanced Optical Communication Systems and Networks, Peking University, Beijing 100871, China
Based on the traditional directional coupler, we proposed a scheme to design on-chip polarization beam splitters using an inverse design method. In our scheme, the coupling area of the designed devices are only 0.48 μm×6.4 μm. By manipulating the refractive index of the coupling region, the devices can work in C-band, L-band, O-band, or any other communication band. Different from conventional design methods, which need to adjust the design parameters artificially, if the initial conditions are determined, the proposed scheme can automatically adjust the design parameters of devices according to specific requirements. The simulation results show that the insertion losses of the designed polarization beam splitters can be less than 0.4 dB (0.35 dB) for TE (TM) mode at the wavelengths of 1310, 1550, and 1600 nm, and the extinction ratios are larger than 19.9 dB for the TE and TM modes at all three wavelengths. Besides, the extinction ratios of both polarization states are more than 14.5 dB within the wavelength range of 1286–1364 nm, 1497–1568 nm, and 1553–1634 nm. At the same time, the insertion losses are smaller than 0.46 dB.
Mathematical methods in physics Polarization-selective devices Subwavelength structures Integrated optics devices 
Photonics Research
2018, 6(6): 06000574
作者单位
摘要
温州大学物理与电子信息工程学院, 浙江 温州 325035
利用偏振分束器(PBS)选择性地实现a轴切割Nd∶YVO4晶体π和σ偏振的激光输出的实验研究。四方晶系Nd∶YVO4晶体偏振荧光光谱的差异, 导致了输出π和σ偏振激光的性能差别。实验中利用PBS的反射光束主动选偏, 结合激光晶体沿通光方向旋转, 分别对a轴切割Nd∶YVO4晶体的4F3/2~4I11/2和4F3/2~4I13/2能级跃迁的偏振激光性能进行测试。在11 W的入射抽运功率下, 基于4F3/2~4I11/2能级跃迁分别获得了5.5 W的π偏振1064.3 nm激光输出和4.4 W的σ偏振1066.7 nm激光输出; 基于4F3/2~4I13/2能级跃迁分别获得了2.9 W的π偏振激光输出和1.6 W的σ偏振激光输出, 但波长均为1341.8 nm。实验结果表明:a轴切割Nd∶YVO4晶体的π偏振激光输出有更高的转换效率, 而σ偏振激光输出则有更长的激光谱线。
激光器 偏振选择器件 Nd∶YVO4晶体 偏振分束器 
中国激光
2017, 44(7): 0701007
Author Affiliations
Abstract
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2 State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts Telecommunications, Wuhan 430074, China
3 Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
We propose an ultra-broadband and fabrication-tolerant polarization rotator-splitter (PRS) based on a waveguide with an L-shaped cross section and a Y-junction. The proposed PRS is based on the 220 nm silicon-on-insulator platform, and it shows less than 0.27 dB insertion losses and larger than 14 dB polarization extinction ratios over a wavelength range from 1200 to 1700 nm. To the best of our knowledge, the PRS working in the whole optical communication band is proposed for the first time.
130.3120 Integrated optics devices 130.5440 Polarization-selective devices 230.7370 Waveguides 
Chinese Optics Letters
2016, 14(4): 041301

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!