作者单位
摘要
西安交通大学 电气绝缘国家重点实验室,西安 710049
输出高电压等级的同时,为实现Tesla变压器的小型化、轻量化设计,研究了0.5 MPa SF6气体环境中支撑绝缘子沿面闪络特性与表面电场的关系,利用有限元法建立了Tesla变压器的电场仿真模型,结合实验研究分析了支撑绝缘子沿面闪络过程,阐明了Tesla变压器关键绝缘部件的场等效实验方法和结论,根据上述分析优化支撑绝缘子结构。优化后的支撑绝缘子凹侧沿面电场最大值下降约81.5%,切向电场强度平均值降低约10.3%,法向电场强度平均值降低约30%,沿面距离增长11.8%,电场不均系数从5.03下降为1.20,电场分布改善明显,预计可以耐受1 MV负极性微秒脉冲电压。
Tesla变压器 支撑绝缘子 微秒脉冲 沿面闪络 表面电场 Tesla transformer support insulator microsecond pulse surface flashover surface electric field 
强激光与粒子束
2023, 35(9): 095001
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
LC谐振充电是Tesla变压器常用的初级电容充电技术,但存在对控制时序要求高、易受电磁干扰和不具备故障保护能力等缺陷。针对这个问题,提出了一种时基反馈控制的LC谐振充电电源。该电源与传统LC谐振电源的主要区别在于,采用特殊设计的时基反馈电路取代多路时基控制器,将能量回收开关反向阻断瞬间的电压突变调制为谐振晶闸管触发信号,从而在能量回收结束时刻启动谐振充电,实现各工作回路准确按照预定时序运行。时基反馈电路由高压元件构成,不易受电磁干扰,且在原理上具备负载短路保护能力。该技术已经应用于CKP1000,CKP5000等多台Tesla型超宽谱脉冲源。实验结果表明,在强脉冲辐射环境下,该电源能够1000 Hz重频稳定运行,且能够在Tesla变压器初级短路故障时进行快速自动保护。
Tesla变压器 LC谐振 充电电源 时序 反馈电路 短路保护 Tesla transformer LC resonance capacity charging power supply time base feedback circuit short-circuit protection 
强激光与粒子束
2018, 30(8): 085005
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
提出了一种结合高耦合Tesla变压器和螺旋形成线(FL)的紧凑型高压纳秒脉冲发生器,由内置Tesla变压器充电的螺旋FL包含外屏蔽筒、螺旋中筒和内导体筒,内外筒的两端均短路连接,螺旋中筒的一端开路,另一端穿过内外筒短路端面并与主开关电极连接。该结构简单紧凑、易于实现,输出脉冲前沿快、平顶好。给出了一组10 GW功率、百ns脉宽的FL设计,采用Midel 7131合成酯绝缘介质,FL外筒内径0.88 m,长度2 m。
螺旋线 特斯拉变压器 长脉冲 高电压 脉冲功率 spiral line Tesla transformer long pulse high voltage pulsed power 
强激光与粒子束
2017, 29(2): 025002
作者单位
摘要
国防科学技术大学 光电科学与工程学院,湖南 长沙 410073
为实现对传输线开关振荡器或振荡天线进行快速充电,以提高其耐压能力和产生高频振荡信号的能量效率,本文研制了一种基于Tesla 变压器的电容储能型脉冲驱动源。本文首先介绍该驱动源的工作原理和运行过程,接着利用等效电路方法分析了关键电路参数对负载充电过程的影响,然后介绍该驱动源的具体工程设计,最后介绍该驱动源初步测试结果以及将其应用于变压器油在10 ns 量级脉冲下击穿特性研究的实验情况。实验表明,输出火花开关在中储电容器充电电压为-191 kV 导通时,通过电感对等效电容为15 pF 的传输线充电电压峰值为-224 kV,电压上升时间约10 ns。研究结果表明本文研究的驱动源能够满足对传输线开关振荡器等电容负载进行快速充电至数百kV 高压的应用需求。
宽带高功率微波 传输线开关振荡器 振荡天线 Tesla 变压器 wideband high power microwave transmission line switched oscillator resonant antenna Tesla transformer 
太赫兹科学与电子信息学报
2016, 14(2): 224
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
为实现MV级多级气体开关精确触发控制,提出了基于Tesla变压器和Blumlein线的低抖动重频脉冲发生器的电触发方案。完成了Tesla变压器与Blumlein线一体化设计; 优化了初级回路结构及绝缘栅双极型晶体管触发控制电路,减小了初级杂散电感,缩短了变压器次级高电压建立时间及时延抖动; 优化了百kV级自击穿气体开关工作参数,研制出一套多级低抖动电晕稳定开关; 将传统Blumlein线绝缘介质由变压器油更换成高介电常数的MIDEL7131新油,增加了输出脉冲宽度,进一步提高触发能力。最终研制出一台输出电压130 kV、脉冲宽度大于5 ns、重复频率50 Hz、连续工作时间1 min、输出抖动小于10 ns的紧凑型脉冲发生器。
Tesla变压器 Blumlein线 低抖动 重复频率 Tesla transformer Blumlein pulse forming line low-jitter repetitive frequency 
强激光与粒子束
2016, 28(4): 045005
作者单位
摘要
华中科技大学 强电磁工程与新技术国家重点实验室, 武汉430074
提出了一种基于Tesla变压器且带触发网络的多重火花间隙触发器设计方案。阐述了多重火花间隙在直流和脉冲信号下电压分布特性, 并给出了其在脉冲电压作用下电压分布的主要影响因素。仿真分析了触发频率、分压电容和均压电阻对多重火花间隙电压分布的影响, 确定了触发网络的最佳参数配置。以10级火花间隙为例, 从触发器设计三要素, 即脉冲陡度、输出幅值、带载能力出发, 确定了Tesla型脉冲触发器的关键设计参数, 当脉冲变压器的耦合系数为0.7, 初级电感为2500 nH, 次级电感为400 mH, 初级电容为60 μF, 初级电容充电电压为2.0 kV时, 次级直接输出的触发高压可实现10级火花间隙的触发导通。结合多重火花间隙导通实验, 对作用于多重火花间隙的触发器的工作过程进行实验验证。
多重火花间隙 触发器 Tesla变压器 触发频率 分压电容 multiple spark gaps trigger generator Tesla transformer trigger frequency dividing capacitor 
强激光与粒子束
2016, 28(1): 015018
作者单位
摘要
西北核技术研究所, 西安 710024
研制了一台输出电压100 kV的重复频率快前沿触发器, 该触发器基于内嵌Tesla变压器的单筒脉冲形成线和气体开关技术, 具有抖动低、结构紧凑、运行可靠等特点。理论分析了影响Tesla型触发器输出脉冲时间抖动的因素, 提出了降低抖动的措施, 进行了Tesla变压器的理论设计和数值模拟, 并开展了实验研究。获得的触发器输出参数为: 输出电压100 kV(40 Ω匹配阻抗), 半高宽4 ns, 前沿0.5 ns, 重复频率50 Hz, 抖动小于10 ns。
Tesla变压器 重复频率 低抖动 高压脉冲 快前沿 触发器 Tesla transformer repetitive frequency low jitter high voltage pulse fast rise time trigger generator 
强激光与粒子束
2015, 27(5): 055005
作者单位
摘要
华中科技大学 强磁场工程与新技术国家重点实验室, 武汉 430074
脉冲变压器与陡化开关结合的方式是产生纳秒脉冲较为成熟的方式, 采用这种方式, 研制了一种基于空芯Tesla变压器和陡化开关的紧凑高压重复频率纳秒脉冲源。该脉冲源主要由重复频率充电模块、Tesla变压器和陡化开关三部分组成, 重复频率充电模块主要通过晶闸管的时序配合实现, Tesla变压器为脉冲源装置系统的核心及主升压模块, 陡化开关是一个三电极自击穿型气体开关, 用于将变压器次级输出的电压陡化成纳秒快脉冲波形, 对该重复频率脉冲源以上各部分进行了详细的设计和测试。实验结果表明, 该脉冲源可以在6 kΩ的负载电阻上输出幅值100 kV、上升沿约为30 ns、最高频率可达500 Hz的高压纳秒脉冲。
Tesla变压器 重频纳秒脉冲 脉冲源 陡化开关 Tesla transformer repetitive nanosecond pulse pulse generator peaking switch 
强激光与粒子束
2015, 27(1): 015001
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
采用带有开路磁芯的Tesla变压器与单筒脉冲形成线一体化结构,研制了一台基于Tesla变压器的紧凑GW级纳秒脉冲源,该源包括一个40 Ω脉冲形成线、内置Tesla变压器、初级电路及高压吹气主开关等,具有变比高、结构紧凑、能量传输效率高、便于重复频率运行等特点。给出了脉冲形成线、Tesla变压器和主开关等的工作原理、设计方法和模拟计算。实验结果表明,该脉冲源输出电压大于200 kV,脉冲宽度约8 ns,可以在重复频率100 Hz、平均输出功率1 GW情况下稳定运行,实验结果与理论设计相符。
ns脉冲源 Tesla变压器 脉冲形成线 主开关 开路磁芯 ns pulse generator Tesla transformer pulse forming line main switch open circuit magnetic core 
强激光与粒子束
2014, 26(12): 125001
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
对具有不闭合磁芯的Tesla变压器磁路进行了研究,计算了Tesla变压器磁路中磁力线分布以及各处磁感应强度分布,结果表明:在磁芯所在位置,磁力线主要集中在磁芯内部;在内外筒磁芯之间,磁力线主要分布在初次级线圈以外磁芯两端之间的空隙中。实际的Tesla变压器漏磁较小,分析了在没有漏磁的理想情况下Tesla变压器不闭合磁芯对初、次级线圈电感的影响,并给出了初、次级线圈电感的估算公式,利用估计公式得出的结果与实际测量对比,误差范围在15%以内,该公式在Tesla变压器设计和参数估算时不失为一种简便易行的处理方法。
Tesla变压器 不闭合磁芯 初级线圈 次级线圈 磁路 Tesla transformer open circuit magnetic core primary coil secondary coil magnetic circuit 
强激光与粒子束
2013, 25(10): 2763

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!