作者单位
摘要
南京理工大学 机械工程学院,江苏 南京 210094
为研究采用UV-LIGA(Ultraviolet Lithography, Galvanoformung, Abformung)技术制作的多层电铸镍的机械可靠性,对其进行了抗冲击性能分析。利用冲击试验台及信号采集系统测试了UV-LIGA多层电铸镍的抗冲击性能。实验分析得到其累积失效概率-加速度峰值曲线近似拟合于韦布尔统计分布,韦布尔系数γ=7.6,参考加速度为21 300g。当加速度为12 000~18 000g时,可靠性相对较高; 当加速度为12 000~18 000 g时,累计失效概率增加较快; 当加速度大于24 000g时,可靠性下降迅速。利用扫描电子显微镜(SEM)观察了试样,得到其主要的失效形式有分层、断裂、塑性变形以及黏连等。初步分析了失效原因,并提出了相应的优化设计方法,为UV-LIGA多层结构的设计提供实验依据。
多层电铸镍 抗冲击性能 微机电系统(MEMS) Ultraviolet Lithography Galvanoformung Abformung(U UV-LIGA multi-layered electroformed nickel anti-impact property Micro-mechanic-electronic System(MEMS) 
光学 精密工程
2015, 23(4): 1044
作者单位
摘要
1 大连理工大学 精密与特种加工教育部重点实验室, 辽宁 大连 116024
2 大连理工大学 辽宁省微纳米及系统重点实验室, 辽宁 大连 116024
根据光学领域对高深宽比金属微器件的需求,利用UV-LIGA工艺在金属基底上制作了具有高深宽比的金属微光栅.采用分层曝光、一次显影的方法制作了微电铸用SU-8胶厚胶胶模,解决了高深宽比厚胶胶模制作困难的问题.由于电铸时间长易导致铸层缺陷,故采取分次电铸等措施得到了电铸光栅结构;同时通过线宽补偿的方法解决了溶胀引起的线宽变小问题.在去胶工序中,采用“超声-浸泡-超声”循环往复的方法.最终,制作了周期为130 μm、凸台长宽高为900 μm× 65 μm×243 μm的金属微光栅,其深宽比达到5,尺寸相对误差小于1%,表面粗糙度小于6.17 nm.本文提出的工艺方法克服了现有方法制作金属微光栅时高度有限、基底易碎等局限性,为在金属基底上制作高深宽比金属微光栅提供了一种可行的工艺参考方案.
金属微光栅 高深宽比 UV-LIGA工艺 SU-8厚胶 微电铸 metal micro-grating high aspect ratio UV-LIGA technology SU-8 thick photoresist micro electroforming 
光学 精密工程
2015, 23(3): 700
作者单位
摘要
1 中国科学院 电子学研究所, 北京 100190
2 中国科学院 高能物理研究所, 北京 100049
3 北京大学 应用电子学研究所, 北京 100875
真空电子器件的频率正向太赫兹频段发展, 折叠波导慢波结构是行波管的核心部件, 由于真空器件的尺寸与波长具有共渡性, 频率越高, 互作用结构的尺度越小, 加工误差的要求越严格。传统的加工方法很难实现如此微小尺寸的结构, UV-LIGA技术对于制造这种微型结构是一种很有前途的方法。用UV-LIGA方法制备真空器件的慢波结构, 涉及到两个主要的问题: 一是SU8厚胶匀胶过程中如何确保其厚度及其一致性;二是横向贯穿折叠波导中心的电子注通道如何成型。以220 GHz折叠波导为研究对象, 针对上述两个问题开展了相关的工艺试验, 使用特制的PDMS模具, 采用重力匀胶法, 实现了大厚度SU8胶匀胶, 表面平整, 高度一致。在SU8光刻胶中通过专用夹具, 嵌入透明有机丝, 形成细长电子注通道。而后, 采用脉冲电铸电源, 在硫酸铜电铸液中电铸, 获得了表面平整的无氧铜微结构。
微加工 折叠波导 行波管 microfabrication folded waveguide UV-LIGA UV-LIGA traveling wave tube 
强激光与粒子束
2015, 27(2): 024101
作者单位
摘要
1 中国工程物理研究院,电子工程研究所,四川 绵阳621900
2 中国工程物理研究院,太赫兹研究中心,四川 绵阳621900
从行波管工作的物理特性提出了一种获得折叠波导慢波结构参数的简单方法,给定工作频率和电压,能够获得折叠波导慢波结构的初始参数.设计了D波段的折叠波导结构来验证该方法,对其冷测特性如色散、耦合阻抗进行了分析.仿真结果表明,设计的折叠波导慢波结构在中心频率处具有较平缓的色散关系,在中心频率处耦合阻抗为3.5欧姆.在电子注电压为20.6kV,电流为15mA时,27mm(50个周期)的折叠波导慢波结构在220GHz具有13.5dB的增益,3dB带宽为11GHz (213~224GHz).同时讨论了折叠波导慢波结构的微加工工艺,并通过UV-LIGA工艺获得了实验样品.
行波管 折叠波导 仿真 THz辐射 TWT folded waveguide simulation UV-LIGA UV-LIGA terahertz radiation 
红外与毫米波学报
2014, 33(1): 62
作者单位
摘要
1 军事交通学院 军事物流系, 天津 300161
2 大连理工大学 机械工程学院, 辽宁 大连 116023
研究了细胞培养器微注塑模具型腔的制作方法。针对微注塑模具型腔的结构特点, 采用UV-LIGA套刻技术, 分别通过两次SU-8胶光刻和Ni的微细电铸制作了以合金钢为基底的微结构; 然后利用掩膜腐蚀方法在铸层上腐蚀出微排气通道。对SU-8厚胶工艺过程中的溶胀现象、匀胶不平整和去除困难等问题进行分析, 提出在掩膜板图形四周增设封闭的宽度为20 μm的隔离带来减少图形四周SU-8厚胶体积, 改善了该处胶模的热溶胀变形, 使铸层的尺寸误差由原来的35 μm降低到10 μm, 300 μm高的微柱体侧壁陡直。隔离带的引入有效地提高了铸层图形的尺寸和形状精度。由于采用了刮胶的匀胶工艺和发烟硫酸去除SU-8胶的方法, 消除了“边缘水珠效应”, 彻底去除了SU-8胶。采用提出的方法可获得铸层质量好, 与基底结合强度高的微注塑模具型腔。
细胞培养器 UV-LIGA技术 SU-8胶 微注塑模具型腔 微结构 cell culture device UV-LIGA technology SU-8 thick photoresist micro-injection mold cavity microstructure 
光学 精密工程
2013, 21(5): 1228
作者单位
摘要
1 大连理工大学 精密与特种加工教育部重点实验室, 辽宁 大连, 116024
2 大连理工大学 辽宁省微纳米及系统重点实验室, 辽宁 大连, 116024
首次将超声处理引入UV-LIGA工艺中, 研究了超声处理对SU-8胶模溶胀的影响, 并探讨了其影响机理, 从而获得了减小胶模溶胀及提高电铸微器件尺寸精度的方法。试验研究了超声处理对显影过程及电铸过程中SU-8胶模溶胀的影响, 分析了不同超声时间下SU-8胶表面亲水性的变化趋势, 并计算了不同超声时间下胶模的溶胀去除率。讨论了超声处理对不同结构微器件尺寸精度的影响。试验结果表明: SU-8胶模在显影过程中的溶胀不明显, 并且超声处理对显影过程中胶模的溶胀影响很小, 其主要影响SU-8胶模在电铸过程中的溶胀。随着超声时间的增加, 胶模溶胀及其表面亲水性均呈现先减小后增大的趋势。当超声时间为10 min时, 胶模溶胀最小, 其溶胀去除率α值可高达70%, 并且超声处理后电铸微器件的尺寸误差与结构尺寸无关。根据超声波的机械断键作用与聚合物吸水机理, 从亲水性和内应力两个方面, 探究了SU-8胶模溶胀随超声时间的增加而变化的原因。文中提出的减小SU-8胶溶胀的方法不依赖于工艺参数也不会增加掩模图形设计的复杂性, 是一种实用的减小SU-8胶溶胀的新方法。
超声处理 SU-8光刻胶 溶胀 电铸 ultrasonic treatment SU-8 photoresist swelling electroforming UV-LIGA UV-LIGA 
光学 精密工程
2012, 20(9): 2006
作者单位
摘要
1 大连理工大学 精密与特种加工教育部重点实验室,辽宁 大连 116024
2 大连理工大学 辽宁省微纳米及系统重点实验室,辽宁 大连 116024
针对金属微注塑模具UV-LIGA制作过程中由于SU-8胶内应力过大而引起的胶膜破裂、变形甚至脱落等问题,提出将超声时效技术应用于微注塑模具的制作工艺。首先,利用紫外光刻工艺制备了电铸胶膜,在显影前使用自制的超声时效装置对胶膜进行超声处理。然后,采用无背板生长方法在38CrNiMnMo模具钢基底上直接进行镍金属的电铸生长,讨论并解决了工艺过程中遇到的SU-8胶浮胶变形、非圆形基片的匀胶、胶膜中的气泡以及微电铸层结合不牢等问题。最后,制作出微通道宽度和高度分别为80 μm和35 μm的微注塑模具。实验结果表明,超声时效技术的使用避免了由于SU-8胶内应力过大引起的破裂、变形甚至从基底脱落等缺陷,增强了UV-LIGA技术制作微注塑模具的能力,提高了制作微注塑模具的成功率。
超声时效技术 微注塑模具 UV-LIGA工艺 SU-8光刻胶 内应力 ultrasonic stress relief technology microinjection mold UV-LIGA process SU-8 photoresist internal stress 
光学 精密工程
2012, 20(6): 1250
作者单位
摘要
上海交通大学 微纳科学技术研究院 薄膜与微细加工技术教育部重点实验室 微米/纳米加工国家重点实验室,上海 200240
为了对微米尺度薄膜材料的力学性能进行测试,开发了一套成本较低的单轴微拉伸MEMS材料力学性能测试系统。首先,根据有限元模拟优化设计测试样片,使其能够易于夹持、准确对中,以利于应力和应变的测量。接着采用三维非硅UV-LIGA微加工技术制备了Ni薄膜样片。根据单轴拉伸测试过程和硬件构成,以Visual Basic为平台编译了一套数据采集与分析系统。最后,应用该测试系统完成对电镀Ni薄膜材料性能的测试。实验结果表明,该系统能够精确测试试样应变,精度达到0.01 μm,拉伸力精度达到mN级。得到的电镀Ni薄膜材料的杨氏模量约为94.5 GPa,抗拉强度约为1.76 GPa。该系统基本满足微米尺度材料单轴微拉伸力学性能测试的需要。
材料力学测试 微机电系统 单轴微拉伸 有限元模拟 杨氏模量  material mechanical test Micro-electronic-Mechanical system uniaxial tensile test Finish Element Method(FEM) UV-LIGA UV-LIGA Young’s modulus nickel 
光学 精密工程
2010, 18(5): 1204
作者单位
摘要
1 中国科学技术大学 国家同步辐射实验室,安徽 合肥 230029
2 中国工程物理研究院 电子工程研究所,四川 绵阳 621900
微型加速度开关是用于空间飞行体中感受加速度并完成致动的重要惯性器件。本文采用UV-LIGA技术,结合SU-8厚胶工艺、微电铸工艺以及牺牲层技术,制作了微型螺旋形加速度开关。研究了牺牲层工艺、SU-8光刻技术以及螺旋形弹簧形变控制等微细加工的工艺细节;分析了多种牺牲层材料的特性,优选了与工艺相适应的Zn牺牲层体系,解决了微结构易脱落的工艺问题。通过优化微电铸工艺来减小金属膜层的内应力,优化牺牲层释放工艺来避免腐蚀过程对弹簧膜结构的冲击。实验结果表明,通过工艺优化可得到平整的微型螺旋形弹簧—质量块结构,螺旋弹簧厚度为20 μm,质量块厚度达200 μm,本文的工作可为大批量、低成本地研制微型加速度开关提供工艺基础。
SU-8光刻 加速度触发开关 牺牲层技术 UV-LIGA UV-LIGA SU-8 lithography acceleration triggering switch sacrificial layer technology 
光学 精密工程
2010, 18(5): 1152
作者单位
摘要
南京航空航天大学 江苏省精密与微细制造技术重点实验室,江苏 南京 210016
采用UV-LIGA技术制作了超高金属微细阵列电极,并利用电解置桩的方法辅助去除SU-8胶。通过单次涂胶和提高前烘温度、降低后烘温度的方法制作了厚度达1 mm的SU-8胶结构;采取反接电极法在金属基底上电解得到微坑,增强电铸金属电极与金属基底的结合力,保证去胶后电铸金属的完整性。选取优化的工艺参数:单次注射式涂胶,前烘110 ℃/12 h,适量曝光剂量,分步后烘50 ℃/5 min、70 ℃/10 min、90 ℃/30 min,反接电极电解10 V/15 min等,获得了高900 μm、线宽300 μm的金属微细阵列电极结构。试验表明,UV-LIGA技术是一种高效、经济的制造超高微细阵列电极的有效手段。
SU-8胶 电解 去胶 微细阵列电极 UV-LIGA UV-LIGA SU-8 resist electrochemical machining resist removal micro electrode array 
光学 精密工程
2010, 18(3): 670

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!