作者单位
摘要
1 中国地质科学院水文地质环境地质研究所, 河北 石家庄 050061福建省水循环与生态地质过程重点实验室, 福建 厦门 361000
2 北华航天工业学院, 河北 廊坊 065000北京市农林科学院信息技术研究中心, 北京 100097河北省航天遥感信息处理与应用协同创新中心, 河北 廊坊 065000
3 廊坊师范学院, 河北 廊坊 065000
4 北华航天工业学院, 河北 廊坊 065000
5 北京市农林科学院信息技术研究中心, 北京 100097
受大田环境的影响, 田间采集的冬小麦冠层光谱内含有大量与目标信息无关的噪声, 这制约了高光谱数据对冬小麦植株信息的估测能力。 为制约噪声信息对光谱信息的影响, 探寻提升光谱对冬小麦植株水分供给信息估测能力的方法, 通过野外地面实验获取大田冬小麦高光谱数据及其叶片含水量信息, 采用离散小波算法处理分析高光谱数据, 结合相关性分析算法、 偏最小二乘算珐, 定量分析5类小波基对离散小波算法分离光谱信息的影响规律, 离散小波算法在分离可用光谱信息与噪声中的普适规律及小波基对信息分离的影响进行探讨, 从而为田间光谱数据的处理与分析提供理论与方法支撑。 结果表明: (1)与冬小麦含水量敏感的波段多分布于D1-D5尺度, 且敏感波段在各小波基内的分布区间相对一致, 但波段位置与相关强度均存在一定差异, 这表明小波基的选择能影响高频信息与冬小麦叶片含水量的相关强度与波段位置。 (2)可用的光谱信息与噪声信息均随分解尺度的增加而呈先升后降的规律, 噪声信息对高频信息估测能力的干扰强度随尺度的增加而降低, 高频信息对冬小麦叶片含水量的估测能力随尺度的增加而降低。 (3)模型的精度与稳定性是可用光谱信息与噪声信息综合作用的结果, 其中基于meyer小波基的D5尺度构建的估测模型为最优模型, 其建模精度的R2=0.625、 RMSE=1.562, 验证精度的R2=0.767、 RMSE=1.828。 本研究的结论可为基于离散小波算法的光谱处理与分析提供指导, 并为受噪声影响较重的光谱信息的处理与分析提供一定参考, 同时也可为我国西南、 南部等全年水汽含量较高区域内或北方夏季作物叶片含水量的检测提供基础支撑。
冬小麦 叶片含水量 离散小波 噪声信息 高光谱 Winter wheat Leaf water content Discrete wavelet Noise information Hyperspectral 
光谱学与光谱分析
2023, 43(9): 2902
作者单位
摘要
吉林大学生物与农业工程学院, 吉林 长春 130022
小麦是我国的主要粮食作物之一, 对国民经济发展具有显著的影响。 然而, 高温与紫外线胁迫导致其产量大幅下降。 胁迫发生时, 细胞壁内多糖物质会发生不同程度的转变。 作为此类多糖重要组成成分的果胶, 在决定细胞间孔隙度、 识别病菌、 维持结构完整等方面扮演着重要角色。 当前, 常见的果胶检测方法有重量法、 滴定法、 酸提取法等, 这些方法多为有损检测, 测定步骤繁琐, 样本损耗量大。 近年来, 光谱检测因其检测速度快、 分辨率高、 实时性强等优点, 在植物生理信息检测领域得到了广泛应用。 因此, 研究采用光谱检测果胶含量。 以济麦22为研究对象, 采取水培方式, 通过调控人工气候培养箱温度及紫外线灯辐照强度对小麦生长过程中遇到的高温及紫外线胁迫环境进行模拟; 在小麦分蘖期, 分别采集叶片高光谱数据与叶绿素荧光光谱数据, 测定叶片果胶含量, 通过小波分析方法对两种原始光谱数据进行平滑与降噪处理, 采用相关系数分析法得到两种光谱数据与果胶含量相关系数最高的重合波段(620, 651), 取该波段内两光谱数据平均值, 重塑双光谱曲线; 按照3∶1比例划分训练集和验证集, 采用PLS最小二乘法分别建立高光谱反演果胶模型、 荧光光谱反演果胶模型及双光谱反演果胶模型。 结果表明: 双光谱模型反演的小麦叶片果胶含量效果较好, 对应模型的训练集与验证集相关系数分别为0.944 9及0.944 5。 该研究有助于探究逆境胁迫下小麦细胞壁内多糖物质响应情况, 并为大田作物所处胁迫环境和程度的预测及种植环境的精准管控提供参考和帮助。
小麦 光谱技术 果胶 高温胁迫 紫外线胁迫 模型预测 Wheat Spectral technology Pectin High tempurature stress Ultraviolet stress Model predicton 
光谱学与光谱分析
2023, 43(9): 2705
作者单位
摘要
1 农业部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097南京农业大学国家信息农业工程技术中心, 江苏 南京 210095
2 农业部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097
3 河南工程学院土木工程学院, 河南 郑州 451191
作物氮含量影响作物的生长状况, 合适的施氮量可以促进作物生长和提高作物产量, 因此准确、 快速地监测作物的氮含量十分必要。 旨在探索将无人机成像高光谱获取的植被指数和光谱特征参数相结合以提高冬小麦关键生育期氮含量估算精度的潜力。 首先, 以无人机为遥感平台, 搭载高光谱传感器获取了冬小麦拔节期、 挑旗期、 开花期和灌浆期4个主要生育期的高光谱遥感影像, 并实测了各生育期的氮含量数据。 其次, 基于预处理后的高光谱影像, 提取冬小麦各生育期的冠层反射率数据, 并构造能较好反映作物氮素营养状况的12种植被指数和12种光谱特征参数。 然后, 计算了各光谱参数与冬小麦氮含量的相关性, 并筛选出各生育期与氮含量相关性较强的植被指数和光谱特征参数; 最后, 利用逐步回归分析(SWR)构建基于植被指数、 植被指数结合光谱特征参数的氮含量估算模型。 结果显示: (1)选取的大部分植被指数和光谱特征参数与冬小麦氮含量都有较高的相关性。 其中, 植被指数的相关性高于光谱特征参数; (2)基于单个植被指数或光谱特征参数估算冬小麦虽然可行, 但精度还有待进一步提高; (3)与单一植被指数或光谱特征参数相比, 植被指数结合光谱特征变量利用SWR方法构建的氮含量估算模型的精度和稳定性更高(拔节期: 建模R2=0.64, RMSE=24.68%, NRMSE=7.96%, 验证R2=0.77, RMSE=23.13%, NRMSE=7.81%; 挑旗期: 建模R2=0.81, RMSE=15.79%, NRMSE=7.41%, 验证R2=0.84, RMSE=15.10%, NRMSE=7.08%; 开花期: 建模R2=0.78, RMSE=9.88%, NRMSE=5.66%, 验证R2=0.85, RMSE=9.12%, NRMSE=4.76%; 灌浆期: 建模R2=0.49, RMSE=13.68%, NRMSE=9.85%, 验证R2=0.40, RMSE=18.29%, NRMSE=14.73%)。 研究结果表明, 结合无人机成像高光谱获取的植被指数和光谱特征参数构建的冬小麦氮含量估算模型精度和稳定性较高, 研究结果可为冬小麦氮含量的空间分布和精准管理提供参考。
无人机 冬小麦 高光谱 氮含量 逐步回归 光谱特征参数 Unmanned aerial vehicle Winter wheat Hyperspectral Nitrogen content Stepwise regression Spectral feature parameters 
光谱学与光谱分析
2023, 43(10): 3239
作者单位
摘要
1 新疆农业大学农学院, 新疆 乌鲁木齐 830052
2 中国农业科学院作物科学研究所, 北京 100081
3 新疆农业科学院粮食作物研究所, 新疆 乌鲁木齐 830091
小麦产量产前估测关乎农业生产计划制定、 粮食安全保障、 国家经济和宏观决策。 应用无人机能够无损、 快速准确、 及时高效地估测小麦产量, 通过多种机器学习方法充分挖掘无人机多源遥感数据对多个小麦品种进行籽粒产量估测的潜力, 明确多源数据融合对模型估测精度的提升效果, 对于作物田间管理保障小麦高产稳产具有重要意义。 以黄淮麦区140个主栽小麦品种为材料开展冬小麦田间试验, 采用搭载红绿蓝(RGB)和多光谱传感器的无人机平台对灌浆期的冠层信息进行采集, 分别以岭回归、 支持向量回归、 随机森林回归、 高斯过程、 k-最邻近算法和Cubist等六种机器学习算法建立单传感器数据以及多源数据融合的产量估测模型, 采用决定系数(R2)、 均方根误差(RMSE)和相对均方根误差(RRMSE)对估算模型进行评价。 结果表明, 所选取的10个可见光植被指数及13个多光谱被指数特征值均与实测产量呈极显著相关(p<0.01), 各特征值产量相关系数绝对值由高到低依次为多光谱植被指数(0.54~0.83)、 可见光植被指数(0.45~0.61)、 纹理特征(<0.45)。 全部六种机器学习算法均在采用多源数据融合时产量估测模型精度最高, 多源数据融合产量估测精度(平均决定系数R2=0.50~0.71)>多光谱传感器产量估测精度(R2=0.53~0.69)>RGB传感器产量估测精度(R2=0.35~0.51)。 多源数据融合相对于RGB数据的R2提高0.17~0.23, 平均均方根误差(RMSE)降低0.06~0.09 t·hm-2; 相对于多光谱数据的R2提高0.01~0.06, RMSE降低0.01~0.03 t·hm-2。 Cubist算法与其他5种算法相比, 建立的多源数据融合模型产量估测精度最高, R2为0.71, RMSE为0.29 t·hm-2。 研究表明, 相对于单一传感器数据产量估测模型, 多源数据融合能够有效提升冬小麦品种产量的估测精度, 并且Cubist算法能相对更好地处理多模态融合数据提高产量预测精度, 为预测不同小麦品种的产量提供理论指导。
无人机 遥感 小麦估产 光谱指数 纹理特征 Unmanned aerial vehicle Remote sensing Wheat yield estimation Spectral index Texture feature 
光谱学与光谱分析
2023, 43(7): 2210
作者单位
摘要
1 江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点实验室, 江苏 扬州 225009江苏省粮食作物现代产业技术协同创新中心/扬州大学农学院, 江苏 扬州 225009
2 中国科学院空天信息创新研究院, 北京 100094
随着长江中下游稻麦轮作区水稻成熟期的推迟, 冬小麦播期的推迟已经成为影响产量的主要障碍, 因此在迟播小麦中筛选抗性较好的品种很有必要。 该研究旨在监测冬小麦生长早期冠层叶片的相对叶绿素含量, 用于迟播冬小麦品种筛选。 为探讨利用无人机多光谱影像监测冬小麦叶绿素含量的可行性, 基于多光谱无人机获取的5个单波段光谱反射率和15个植被指数作为自变量, 经过递归特征消除法(RFE)特征变量筛选, 去除冗余变量, 利用后向神经网络(BP)回归算法构建冬小麦相对叶绿素含量(SPAD)值遥感反演模型。 根据2020年—2021年江苏省扬州市广陵区实验点冬小麦越冬期、 拔节期两个生育期的实测叶片SPAD值, 结合同步获取的多光谱无人机影像, 分析了这两个生育期遥感变量和SPAD值之间的相关性。 并结合遥感变量之间的特征重要性排序进行特征变量筛选, 筛选出的变量作为模型的输入, 构建并筛选出各生育期最佳的反演模型。 比较岭回归(Ridge)和梯度提升树(GBD)算法, 以R2和RMSE作为模型评价指标, 在验证集上分析了各生育期3种模型的自学习能力和泛化能力。 结果表明, 经过了最优光谱信息筛选而建立的BP神经网络模型在此两个生育期的数据集上均表现出了最强的回归预测能力。 R2和RMSE在越冬期分别为0.806和1.861, 拔节期分别为0.827和0.507。 通过对无人机多光谱数据进行变量筛选, 构建的优选模型BP神经网络具有较高估算精度, 且表明在冬小麦的早期监测中, 拔节期比越冬期效果好。 利用无人机多光谱在估算迟播冬小麦SPAD值进行品种抗性筛选的方法是有价值的。
品种筛选 无人机 小麦SPAD值 BP神经网络 特征选择 Variety screening UAV Wheat SPAD values BP neural network Feature selection 
光谱学与光谱分析
2023, 43(6): 1912
作者单位
摘要
1 河南理工大学测绘与国土信息工程学院, 河南 焦作 454000
2 中国农业科学院农业环境与可持续发展研究所, 北京 100081
3 河北省农林科学院旱作农业研究所, 河北 衡水 053000
为探究水分胁迫下冬小麦冠层反射率在各生育期响应叶片叶绿素变化的特性, 针对2020年—2021年小麦生长季11个品种(分为强、 一般和弱3个抗旱性品系), 设置了2次灌溉(拔节、 扬花)、 1次灌溉(冬季、 返青、 拔节、 拔节后7天和拔节后14天)以及无灌溉总共3个水分梯度处理, 分析了叶绿素与反射率之间的相关性, 利用波长随机组合方式[简单比值(SRSI)、 简单差值(SDSI)和归一化(NDSI)]与线性拟合方法, 筛选了对叶绿素最为敏感的窄波段光谱指数。 结果表明: (1)所有品系叶绿素含量在各生育期均差异显著, 从拔节到灌浆大致表现为降低─升高─降低态势, 但冬季和返青期灌溉处理下的抗旱性一般品系、 以及返青期灌溉处理下的抗旱性较差品系除外; (2)随着发育进程推移和品种抗旱性减弱, 不同处理间在近红外区域的冠层反射率差距逐渐增大。 (3)叶绿素与窄波段光谱指数的线性拟合决定系数高值区集中在绿(445~591 nm)和红边(701~755 nm)波段。 抗旱性较强品系和抗旱性较差品系的SRSI指数均在开花期反演叶绿素的精度最高, 分别达0.762和0.811; 抗旱性一般品系的NDSI指数在灌浆期精度最高, 为0.732。 该研究对于揭示水分胁迫下叶绿素变化的反射率响应在冬小麦各关键生育期以及品种间差异等, 具有一定参考价值, 可为基于无人机载高光谱技术的抗旱小麦品种高效筛选奠定基础。
遥感 无人机 冬小麦 水分胁迫 高光谱反射率 叶绿素 Remote sensing Unmanned aerial vehicle Winter wheat Water stress Hyperspectral reflectance Chlorophyll 
光谱学与光谱分析
2023, 43(11): 3524
葛宏义 1,2王飞 1,2蒋玉英 1,3,*李丽 1,2[ ... ]贾柯柯 1,2
作者单位
摘要
1 河南工业大学粮食信息处理与控制教育部重点实验室, 河南 郑州 450001
2 河南工业大学信息科学与工程学院, 河南 郑州 450001
3 河南工业大学人工智能与大数据学院, 河南 郑州 450001
小麦质量安全是粮食安全的重要组成部分。传统的小麦霉变籽粒识别检测方法需要复杂的处理步骤, 耗时较长且特征提取能力较差, 易造成图像有效信息的丢失, 导致小麦霉变籽粒识别检测效果不佳。为解决上述问题, 提出了一种基于去噪宽度学习 (D-BLS) 的霉变小麦太赫兹光谱图像识别方法。该方法对传统宽度学习 (BLS) 算法进行了改进, 通过引入去噪卷积神经网络 (DnCNN) 模块, 构建D-BLS霉变小麦分类识别模型, 以增强图像质量, 提高霉变小麦太赫兹光谱图像的识别精度。初步研究表明, D-BLS在识别准确率方面优于传统BLS算法, 识别准确率达到93.13%。进一步使用支持向量机 (SVM)、后向传播神经网络 (BPNN)、卷积神经网络 (CNN) 与D-BLS进行建模对比。研究结果表明, D-BLS网络的分类准确率分别比SVM、BPNN和CNN高出了13.83%、7.79%和3.96%。因此, D-BLS 能够为小麦发霉早期鉴别提供一种新方法。
光谱学 太赫兹 宽度学习 霉变小麦 图像处理 spectroscopy terahertz broad learning system mildewed wheat image processing 
量子电子学报
2023, 40(3): 360
作者单位
摘要
中国农业大学智慧农业系统集成研究教育部重点实验室, 北京 100083
针对中国农田存在种植景观破碎化和复杂的种植结构这一现状, 如何实现目标作物的高精度识别与制图对作物产量估算、 粮食政策调整和国家粮食安全保障具有十分重要意义。 基于Google Earth Engine(GEE)遥感数据处理云平台, 提出一种冬小麦不同生育期的种植结构提取方法, 该方法以2021年覆盖目标作物关键生育期的多时相Sentinel-2影像为数据源, 综合考虑光谱波段特征、 光谱指数特征、 纹理特征和地形特征等多维特征变量, 利用GBDT(gradient boosting decision tree)分类器对不同生育期田块尺度的冬小麦种植面积和空间分布信息进行快速精准提取, 并探讨了冬小麦识别的最佳生育期。 此外, 对比分析了常见的不同分类模型在田块尺度条件下的作物识别性能。 以河南陈固镇为研究区开展实验, 实验结果显示, 冬小麦在起身拔节期的地物识别准确率相对较高, 总体分类准确率为94.61%, Kappa系数为92.68%; 在抽穗扬花期的识别精度最高, 总体分类准确率为97.01%, Kappa系数为95.52%; 但在灌浆乳熟期的分类精度偏低, 总体分类准确率为86.23%, Kappa系数为81.33%。 研究结果表明, 在冬小麦抽穗扬花期, GBDT分类器能对田块尺度条件下的土地覆盖信息进行有效提取, 进而取得较好的地物分类识别效果。 此外, 本研究将GBDT与传统分类器如随机森林(random forest, RF)、 CART(classification and regression tree)和朴素贝叶斯(Naive Bayesian, NB)进行相比。 结果表明, GBDT分类器的地物识别效果最佳, 总体分类准确率比RF分类器和CART分类器分别提高了1.20%和5.99%, Kappa系数比RF分类器和CART分类器分别提高了1.61%和8.04%, 朴素贝叶斯分类器的识别效果最差, 总体分类准确率和Kappa系数分别为84.43%和78.69%。 研究结果可为田块尺度作物精细提取提供有效的技术支持。
GBDT分类器 Sentinel-2卫星传感器 冬小麦 种植结构提取 Google Earth Engine Google Earth Engine GBDT classifier Sentinel-2 satellite Winter wheat Planting structure extraction 
光谱学与光谱分析
2023, 43(2): 597
作者单位
摘要
1 中国农业大学信息与电气工程学院, 北京 100083
2 中国农业科学院农业环境与可持续发展研究所, 北京 100081
3 商丘市农林科学院, 河南 商丘 476000
分蘖数是表征冬小麦生长的关键性参数, 对于冬小麦苗情监测、 产量预估具有重要意义。 针对目前冬小麦分蘖数估算方法存在的数据获取繁复和估算模型体量大的问题, 提出一种基于可见光图像和轻量级卷积神经网络的冬小麦分蘖数估算方法, 以期实现冬小麦分蘖数无损快速估算, 并且可嵌入移动终端设备。 可见光图像具有获取便捷, 处理简单的特点, 利用数码相机连续采集2017年-2018年和2018年-2019年两个生长季的冬小麦冠层可见光图像。 利用该数据图像, 分别构建基于轻量级卷积神经网络MobileNetV2, SqueezeNett, ShuffleNet的冬小麦分蘖数估算模型进行比较试验, 并与基于非轻量级卷积神经网络AlexNet和ResNet系列构建的估算模型进行对比试验。 开展冬小麦分蘖数估算模型针对不同植株密度数据的鲁棒性以及针对不同生长季数据的泛化能力的验证试验。 结果表明, 基于MobileNetV2构建的冬小麦分蘖数估算模型的决定系数(R2)为0.7, 归一化均方根误差(NRMSE)为0.2, 在三个轻量级卷积神经网络中具有最优表现; 基于非轻量级卷积神经网络构建的冬小麦分蘖数估算模型体积是基于MobileNetV2构建的冬小麦分蘖数估算模型的2.3~16.1倍。 与非轻量级卷积神经网络相比较, 基于MobileNetV2构建的估算模型在具有较好R2的同时有较小的体量, 适宜嵌入移动终端设备; 针对120, 270和420 株·m-2三个不同植株密度的可见光图像数据集, 基于MobileNetV2构建的冬小麦分蘖数估算模型的R2分别为0.8, 0.8和0.7, 表现鲁棒; 针对两个生长季的可见光图像, 基于MobileNetV2构建的冬小麦分蘖数估算模型通过迁移学习将R2提升了2倍, NRMSE下降了7.6%, 表现出对数据季节性差异较好的适应性, 体现了模型的泛化能力。 利用可见光图像, 基于MobileNetV2构建的估算模型能够满足冬小麦分蘖数估算需求, 为冬小麦生长观测以及田间农艺措施管理决策提供了一个准确、 鲁棒、 可嵌入移动终端设备的工具。
可见光谱 冬小麦 分蘖数估算 轻量级卷积神经网络 Visible spectrogram Winter wheat Tillering number Lightweight Convolutional Neural Network 
光谱学与光谱分析
2023, 43(1): 273
赵建辉 1,2,3,*徐东亚 1,2,3李宁 1,2,3
作者单位
摘要
1 河南大学计算机与信息工程学院, 河南 开封 475004
2 河南省智能技术与应用工程技术研究中心, 河南 开封 475004
3 河南省大数据分析与处理重点实验室, 河南 开封 475004
冬小麦是中国主要的粮食作物之一, 准确及时地获取冬小麦物候信息是冬小麦长势监测和产量预估的必要条件。星载合成孔径雷达(SAR)是一种微波遥感设备, 具有全天时、全天候的优势, 可实现对周期性农作物物候期大范围监测。基于时间序列 Sentinel-1A SAR数据, 提出一种星载双极化 SAR冬小麦物候期识别方法。该方法基于特征值分解和极化散射分析技术, 提取不同物候期冬小麦的后向散射系数、极化熵、主导散射角等参数, 实现冬小麦物候期识别。实验结果表明, 物候期识别总体精确度达到 79%。该方法在冬小麦生长监测方面具有实用推广价值。
星载 SAR图像 冬小麦 极化分解 物候期 时间序列 spaceborne SAR images winter wheat polarization decomposition phenological period time series 
太赫兹科学与电子信息学报
2023, 21(2): 242

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!