作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,长春 130033
2 中国科学院大学,北京 100049
针对日冕仪中对杂散光的抑制要求,分析了日冕仪系统中的三种杂散光,包括日冕仪物镜二次反射产生的鬼像点、日冕仪物镜散射点、以及日冕仪孔径光阑衍射光。利用光学建模软件对日冕仪系统进行仿真和分析,发现这三种杂散光的成像位置十分接近且不易区分,并会对系统的检测过程和检测结果产生干扰。根据仿真结果,给出了这三种杂散光的判定与抑制方法,并利用一台视场为±1.08 R~±2.5 RR表示太阳半径),工作波段为530.3~637.4 nm,通光口径为220 mm,系统总长为4 321 mm的内掩式日冕仪进行了理论验证和实验对比,验证了判定方法的可行性。同时设计了掩体和鬼像遮拦结构对杂散光进行抑制,增加了日冕仪系统杂散光抑制的选择方案,提升了日冕仪杂散光检测的准确率。
内掩式日冕仪 杂散光检测 光线追迹 鬼像 散射光 杂散光判定 Inner-occulted coronagraph Stray light detection Ray tracing Ghost image Scatter light Stray light determination 
光子学报
2023, 52(11): 1122003
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,长春 130033
2 中国科学院大学,北京 100049
为了更好地实现对日冕及日冕物质抛射的观测,并使观测角度更加精准,设计了太阳对准系统,利用对准系统对太阳成像,根据探测器上太阳像的圆心坐标判断是否对准并调整日冕仪观测角度。将太阳对准系统应用在三圆盘外掩式日冕仪上进行实验,该日冕仪视场为±20°,工作波段为630~730 nm,F数为4,焦距为38 mm,分辨率为1.2'/pixel。对比了单圆盘外掩体与三圆盘外掩体对外掩体边缘衍射光的抑制能力,并提出一种黑洞检测法对日冕仪总杂散光进行检测。实验结果表明,日冕仪指向精度达到0.11',三圆盘外掩体边缘衍射杂散光低于单圆盘外掩体边缘衍射光,且日冕仪总杂散光抑制水平达到10-13量级。杂散光检测方法结果良好,准确性高,对准系统实现了预期功能。
指向精度 天文仪器 日冕仪 杂散光 外掩体 Pointing accuracy Astronomical instruments Coronagraph Stray light External occulter 
光子学报
2023, 52(5): 0552214
沙飞扬 1,2,3刘煜 1,2,4,*张雪飞 1,4宋腾飞 1,4[ ... ]孙明哲 6
作者单位
摘要
1 中国科学院云南天文台,昆明 650215
2 西南交通大学 物理科学与技术学院,成都 610031
3 中国科学院大学 天文与空间科学学院,北京 101408
4 云南省太阳物理与空间目标监测重点实验室,昆明 650011
5 中国科学院国家天文台,北京 100101
6 山东大学(威海),威海 264209
利用云南天文台丽江10 cm日冕仪绿线成像系统研究了物镜表面尘埃量级与其造成的散射杂散光强度的关系,获得了散射光随日心距离的分布规律,并对日冕图像进行了修正。得到了不含尘埃散射杂散光背景的日冕图像,提高了数据质量。本文研究有助于研究日冕强度、结构变化趋势,也有助于理解日冕仪内部其他杂散光源,助力我国未来大口径日冕仪的研发。
日冕仪 YOGIS 杂散光 尘埃 散射 Coronagraph YOGIS Stray light Dust Scatter 
光子学报
2023, 52(5): 0552213
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林长春30033
2 中国科学院大学,北京100049
木卫一等离子体环是木星磁层中密度最大、研究最广泛的区域。为满足木卫一等离子体环的观测需求,设计了一种用于行星大气光谱望远镜(Planetary Atmospheric Spectral telescope, PAST)的Lyot星冕仪。根据木星的辐射特性与PAST参数确定仪器参数,给出Lyot星冕仪的初始结构并进行优化;分析了Lyot星冕仪的成像性能,系统在37 lp/mm的MTF>0.6,满足成像质量要求;确定系统杂散光成因,利用物像共轭关系设计相应的杂散光抑制结构,在千级超净间对Lyot星冕仪进行杂散光抑制水平检测。实验结果表明:系统主要杂散光得到了有效抑制,系统的杂散光抑制水平在2.5Rj处为10-5量级,满足地基观测木卫一等离子体环要求。
光学设计 光学遥感 天文仪器 星冕仪 杂散光 optical design optical remote sensing astronomical instrument stray light coronagraph 
光学 精密工程
2022, 30(17): 2050
Author Affiliations
Abstract
1 Wyant College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA
2 Department of Astronomy and Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA
3 Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA
4 School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
5 National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, PO Box 5000, Upton, New York 11973, USA
Significant optical engineering advances at the University of Arizona are being made for design, fabrication, and construction of next generation astronomical telescopes. This summary review paper focuses on the technological advances in three key areas. First is the optical fabrication technique used for constructing next-generation telescope mirrors. Advances in ground-based telescope control and instrumentation comprise the second area of development. This includes active alignment of the laser truss-based Large Binocular Telescope (LBT) prime focus camera, the new MOBIUS modular cross-dispersion spectroscopy unit used at the prime focal plane of the LBT, and topological pupil segment optimization. Lastly, future space telescope concepts and enabling technologies are discussed. Among these, the Nautilus space observatory requires challenging alignment of segmented multi-order diffractive elements. The OASIS terahertz space telescope presents unique challenges for characterizing the inflatable primary mirror, and the Hyperion space telescope pushes the limits of high spectral resolution, far-UV spectroscopy. The Coronagraphic Debris and Exoplanet Exploring Pioneer (CDEEP) is a Small Satellite (SmallSat) mission concept for high-contrast imaging of circumstellar disks and exoplanets using vector vortex coronagraph. These advances in optical engineering technologies will help mankind to probe, explore, and understand the scientific beauty of our universe.
computer controlled optical surfacing; CCOS multiplexing dwell time optimization optical metrology telescope alignment large binocular telescope MOBIUS pupil segmentation OASIS nautilus hyperion CDEEP vector vortex coronagraph 
Opto-Electronic Advances
2021, 4(6): 06210040
作者单位
摘要
上海理工大学 光电信息与计算机工程学院, 上海200093
将泵浦—探测技术的时间分辨能力引入到光学涡旋日冕仪成像系统中,从而在实现微弱相位型物体无背景成像的同时对其做时间分辨诊断。将该技术应用于飞秒激光激发的空气等离子体的诊断。实验结果表明,利用该技术可以清晰地观察到空气等离子体的生成过程,且实验结果与数值模拟结果符合较好。另外,还观测到空气等离子体的两个衰减过程,并对其进行了双指数拟合分析。其中,具有较快时间尺度(~65 ps)的过程主要由电子与正离子复合导致,具有较慢时间尺度(~810 ps)的衰减过程主要由自由电子在氧气分子上的附着所致。
信息光学 灵敏相位探测 光学涡旋日冕仪 空气等离子体 泵浦探测 飞秒激光 Information optics Sensitive phase detection Optical vortex coronagraph Air plasma Pump-probe method Femtosecond laser 
光子学报
2021, 50(8): 0850216
作者单位
摘要
1 中国科学院自适应光学重点实验室,四川 成都 610209;中国科学院光电技术研究所,四川 成都 610209;中国科学院大学,北京 100049
2 中国科学院自适应光学重点实验室,四川 成都 610209;中国科学院光电技术研究所,四川 成都 610209
系外行星的直接成像是当今国际天文学研究的热点,而对潜在的系外行星候选体进行大面积普查将是未来十年天文学的迫切需要。国际上中小型2 m级望远镜上部署的ROBO-AO瑞利激光信标自适应光学系统(AO),可以灵敏而快速地删察系外行星候选体。但瑞利信标高度引起的聚焦非等晕效应是限制其行星探测能力的重要因素。基于1.8 m望远镜61单元钠信标自适应光学系统优化构建系外行星高对比度成像系统,它将在近红外波长范围内提供系外行星的高对比度成像。通过对钠信标AO高对比度成像过程的仿真,发现在理论上,钠信标AO系统的系外行星高对比度成像性能优于ROBO-AO,即在2 h曝光时间内,可以实现与母恒星光通量比为4×10?7的行星的直接成像,而相同环境下,ROBO-AO系外行星直接成像能力为1×10?6,其中行星与恒星的角间距为1''''。
钠信标 高对比度成像 星冕仪 自适应光学系统 sodium laser guide star high-contrast imaging coronagraph adaptive optics system 
红外与激光工程
2020, 49(8): 20200058
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
太阳是地球能量的主要来源, 太阳活动和变化对地球影响极大。为了满足天文学家对太阳观测和研究的需求, 设计一种新型Lyman α和可见光双波段内掩式日冕仪(SCI日冕仪), 能够在121.6 nm和700 nm两个波段同时对日冕进行高分辨率成像观测。根据太阳在121.6 nm和700 nm日面与日冕的辐射特性确定仪器的参数, 给出了日冕仪的初始结构, 建立评价函数对初始结构进行优化。分析了日冕仪光学系统的成像性能和各个光学元件产生杂散光对成像性能的影响, 确定影响系统杂散光抑制水平的主要光学元件和机械结构, 提出了对光学元件表面粗糙度的要求, 给出了里奥光阑的位置和通光口径。还设计了日冕仪光学反射镜和光学分色镜的膜系结构, 实现了对内日冕在121.6 nm和700 nm两个波段的同时成像。实验结果表明: SCI日冕仪视场覆盖1.1~25个太阳半径(Rs, 取1 Rs=0.267°), 空间分辨率优于4.8″, 杂散光抑制水平在1.1Rs处优于10-6量级, 在2.5Rs处优于10-8量级, 满足观测需求。
光学仪器 日冕仪 可见光 双波段 内掩式 optical instrument coronagraph Lyman alpha Lyman α visible light dual-band internal occulting 
光学 精密工程
2020, 28(2): 303
白先勇 1,2,*王怡然 3张志勇 1,2冯志伟 1,2[ ... ]张洋 1,2
作者单位
摘要
1 中国科学院太阳活动重点实验室, 北京100012
2 中国科学院国家天文台, 北京100012
3 中国科学院国家空间科学中心, 北京 100190
4 中国科学院云南天文台, 云南 昆明 650500
平场改正可以扣除日冕仪成像过程中的不均匀性, 是其数据定标的必要步骤。提出一套基于乳白玻璃测量日冕仪平场的装置和方法, 并开展了相关模拟和实地测量以验证该方法的可行性。首先, 模拟了太阳经乳白玻璃后在日冕仪观测视场内扩散光源的均匀性, 模拟结果表明其均匀度为99.98%, 十分接近理想的均匀面光源。其次, 测量了12 cm地基日冕仪的平场, 测量结果显示该方法可以测量出日冕仪成像的不均匀性, 如探测器的条纹。平场改正后的结果符合日冕和天空背景亮度的径向分布。最后, 为评价利用乳白玻璃测量平场的有效性, 将其和天空平场进行了对比, 二者相关系数为99.94%, 线性拟合斜率为1, 具有极强的相关性。
光学器件 扩散片 日冕仪 图像分析 平场 光度测量 
光学学报
2017, 37(5): 0523002
作者单位
摘要
上海大学理学院物理系, 上海 200444
理论上提出了平顶正弦相位板星冕仪, 该星冕仪可作为正弦相位板星冕仪和六平台相位板星冕仪的推广形式。平顶正弦相位板具有角向的双周期结构, 每个周期中都包含两个平顶的半正弦区域和一个平坦区域。解析地推导了该相位板的宽带工作条件。在这个宽带工作条件的一端, 这个相位板可以退化为正弦相位板; 在另一端, 这个相位板可以退化为六平台相位板。数值计算结果表明, 平顶正弦相位板星冕仪与这两种特例情况一样, 具有良好的消色差能力。
成像系统 星冕仪 傅里叶光学 相位板 
激光与光电子学进展
2017, 54(5): 051102

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!