
Xun Yang 1,2,3,4Jiaqi Zhou 1,2,3,*Zhi Cheng 1,2,3Yan Feng 3,4,**
Author Affiliations
Abstract
1 Wangzhijiang Innovation Center for Laser, Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
The nonlinear Schrödinger equation (NLSE) is extensively used to numerically study pulse evolution dynamics in ultrafast fiber lasers. Yet, the computational speed of the NLSE is relatively slow, restricting its applications in systems that rely on real-time computation for dynamic control and operation. In this work, we propose and demonstrate a deep learning approach for the prediction of Stokes pulses’ evolution in a Raman fiber amplifier based on nonlinear optical gain modulation (NOGM). A four-layer fully connected neural network is developed to predict the spectral evolution of the first-order Stokes light in fiber amplifiers using different types of Raman gain fibers. The model achieves high prediction accuracy with normalized root mean square errors below 0.1, while providing up to 86 times faster computation compared to conventional NLSE methods. The network demonstrates reliable generalization capability for parameter combinations beyond the training dataset.
ultrafast laser deep learning neural network Raman fiber amplifier nonlinear optical gain modulation Chinese Optics Letters
2025, 23(7): 071407
1 北京理工大学机械与车辆学院,北京 100081
2 北京理工大学重庆创新中心光学超精密制造技术研究所,重庆 401152
传统机械接触法分离复杂微结构光学元件时存在分离效率低、分离面边缘崩边情况严重等问题。超快激光分离技术具有分离质量高、速度快、无接触等优点,但只用于脆性平板材料的分离。通过模拟仿真分析了超快激光在分离复杂微结构光学元件过程中的失效原因。提出了液相折射率匹配介质辅助超快激光分离制造技术,即通过将光学元件置入与其折射率匹配的液相介质内形成耦合体的方法,减小工作激光在光学元件微结构处的畸变,进而实现元件内部改性面的建立。采用热浴的方式实现了改性面微裂纹的均匀受热和同步延展,实现了元件无接触分离。完成了厚度为4.2 mm的双面微透镜阵列的分离,分离速度达到100 mm/s,切面粗糙度为2.4 μm,并给出了激光改性分离的工艺窗口。该分离制造技术具有较大的应用前景。
超快激光 光学元件分离 折射率匹配液 激光切割 贝塞尔光束 中国激光
2025, 52(12): 1202405
1 中国科学院上海应用物理研究所,上海 201800
2 中国科学院大学,北京 100049
3 中国科学院上海高等研究院,上海 201210
新一代光源大科学装置对X射线折射透镜质量的要求日益提高,而目前利用超快激光加工金刚石材料、制备折射透镜的工艺不够成熟。为应对加工质量检测需求,提出了一种基于点云处理的透镜表征方法,基于同步辐射X射线断层扫描成像技术,表征通过利用飞秒激光加工金刚石材料制备的二维聚焦透镜的结构,提取曲面点云数据,进行等距离分层、质心查找、拟合计算等处理,完成双面对准偏差以及单面轮廓特征的测量。计算单面顶点曲率半径,将其与激光扫描共聚焦显微镜的测量数据进行比较,结果表明二者的误差小于1.58%。所提方法具有较高的准确性,可定量地表述双面透镜结构特征,能够为超快激光加工工艺的改进提供有效的数据反馈。
X射线折射透镜 点云处理 无损表征 超快激光 同步辐射
上海工程技术大学 机械与汽车工程学院,上海 201620
飞秒激光成丝传输中的线性和非线性效应对光束能量分布和传输有重要影响,研究其在介质中成丝的传输特性将会拓展相关应用前景。由于光束传播对输入光束的形状和波长极为敏感,可以通过改变输入光束的形状和波长来调控光束在介质中能量和光强的分布。本文基于非线性薛定谔方程,研究了变化的波长和形状下,超高斯光束和包裹光束的传输特性。研究发现超高斯光束能够促进光束更快聚焦,也促使介质中光束光强和等离子体密度数值发生改变;超高斯光束和周围环形部分构成的包裹光束,由于存在“能量池”的作用有利于促进和维持光束的传播。此外,减小光束的波长有助于获得更大的光强箝位,促进光束更快聚焦,光强的维持效果明显。
超快激光传输 激光成丝 超高斯光束 包裹光束 非线性薛定谔方程 分步傅里叶法 ultrafast laser propagation laser filamentation super-Gaussian beams wrapped beams nonlinear Schrdinger equation split-step Fourier method
1 广东电网有限责任公司广州供电局计量中心,广东 广州 510700
2 广东工业大学机电工程学院,广东 广州 510006
为解决电力计量仪表传统机械破损产生的碎屑、噪声、刀具损耗等问题,使用超短脉冲激光穿透标刻加工技术,实现绿色高效破损。首先研究计量仪表液晶显示模块表面聚甲基丙烯酸甲酯(PMMA)和内部表层玻璃的激光烧蚀特性,然后讨论两种典型标刻加工方式的机制与特点。其中,当激光直接作用于表面塑料时,塑料的表面碳化会形成黑色的清晰标记,但加工过程会形成小分子产物,造成废气污染;利用激光传播过程中的光斑大小变化及PMMA、玻璃两者烧蚀特性的差异,可以实现穿透式标刻加工,在内部玻璃表面形成清晰图案,这种加工方法主要依赖于玻璃的重熔过程,无明显的废气废渣产生。利用穿透式标刻加工实现退运仪表破损,不仅可避免加工过程中的废气、废渣产生,还实现了计量仪表全生命流程的可追溯要求,有望取代传统机械破损方法。
激光烧蚀 超快激光微加工 聚甲基丙烯酸甲酯 玻璃 表面微结构 laser ablation ultrafast laser micromachining polymethyl methacrylate glass surface microstructures
针对非光学接触的玻璃焊接中许用间隙小和热损伤大的缺点,采 用50 W红外皮秒激光器和100 mm焦距扫描振镜,利用高速扫描多次加工的准同步焊接方法,研究扫描次数对焊缝成形的影响规律,获得了石英玻璃的低热损伤区域焊接接头,将其许用间隙拓宽至5 μm。实验结果表明:玻璃间隙产生的空腔在熔池中以气泡形式存在,空腔随着扫描次数增加远离原玻璃界面,上下层玻璃熔合而形成强结合力;当采用单脉冲能量24 μJ、扫描速度1 000 mm/s、离焦量-100 μm、扫描次数为5次的工艺参数时,最大焊接强度达到21.42 MPa;并且在5 μm的宽间隙下,焊接强度也可达到15.79 MPa。
超快激光 玻璃焊接 准同步焊接 焊缝成形 非光学接触 ultrafast laser glass welding quasi-simultaneous welding weld formation non-optical contact
Author Affiliations
Abstract
Achieving high-level integration of composite micro-nano structures with different structural characteristics through a minimalist and universal process has long been the goal pursued by advanced manufacturing research but is rarely explored due to the absence of instructive mechanisms. Here, we revealed a controllable ultrafast laser-induced focal volume light field and experimentally succeeded in highly efficient one-step composite structuring in multiple transparent solids. A pair of spatially coupled twin periodic structures reflecting light distribution in the focal volume are simultaneously created and independently tuned by engineering ultrafast laser-matter interaction. We demonstrated that the generated composite micro-nano structures are applicable to multi-dimensional information integration, nonlinear diffractive elements, and multi-functional optical modulation. This work presents the experimental verification of highly universal all-optical fabrication of composite micro-nano structures with independent controllability in multiple degrees of freedom, expands the current cognition of ultrafast laser-based material modification in transparent solids, and establishes a new scientific aspect of strong-field optics, namely, focal volume optics for composite structuring transparent solids.
ultrafast laser focal volume light field composite structuring transparent solids advanced manufacturing International Journal of Extreme Manufacturing
2025, 7(1): 015002

Author Affiliations
Abstract
1 Advanced Photonic Technology Lab, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
3 School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
4 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai, 200444, China
A laser has been demonstrated to achieve tunable mode-locked operation using a multifunctional long-period fiber grating (LPFG). By introducing an LPFG with a relatively high polarization-dependent loss of up to 21 dB into the laser cavity, a stable fundamental frequency mode-locked operation was achieved at 1546.26 nm. We also have achieved a wavelength-tunable 40th-harmonic mode-locked laser with a tuning range of nearly 10 nm through simple thermal tuning, based on the tunable attenuation characteristics of the grating. The results indicate that the LPFG can simultaneously act as a polarization-selective and wavelength-selective element in mode-locked lasers.
long-period grating ultrafast laser nonlinear polarization rotation Chinese Optics Letters
2025, 23(4): 040603
1 青海大学机械工程学院,青海 西宁 810016
2 清华大学机械工程系,北京 100084
玻璃等硬脆材料上的微结构应用广泛,然而,利用超快激光在硬脆材料上实现高质量微结构加工仍然面临着质量和效率不能兼顾的问题。本文研究了飞秒激光(900 fs)在石英玻璃上加工微孔阵列时的裂纹产生及扩展机制,并通过激光功率的梯度动态调控,实现了对裂纹产生及扩展的有效控制。研究结果表明,加工过程中裂纹的形成和扩展可分为4个阶段:第一阶段,孔底熔融物凝固引起微裂纹产生;第二阶段,孔底裂纹通过孔壁向外扩展;第三阶段,向外扩展的裂纹在孔周形成环形裂纹;第四阶段,孔阵列中的多个环形裂纹连接形成裂纹网络。虽然降低激光功率可以抑制裂纹的形成,但是加工效率也会随之降低。采用“先低功率后高功率”的梯度功率加工策略可以在保证加工效率的同时抑制裂纹的扩展。微孔阵列加工过程中温度的原位测量结果表明:激光吸收率的提高可使最大温度差下降45%;与恒定功率加工相比,梯度功率加工时工件的最大温度差下降了31%,峰值功率最大温度差下降了44%。梯度功率加工抑制裂纹的机理是:初始时的低功率加工增大材料的表面粗糙度,提高材料对激光的吸收率,减小材料内部的热应力,并使孔深发展至一定程度,进而使得后续切换到高功率加工时孔底裂纹无法通过孔壁向外扩展。本文所提出的梯度功率加工策略可被广泛应用于硬脆材料上微结构的激光加工。
超快激光加工 梯度功率 硬脆材料 裂纹
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 暨南大学物理与光电工程学院,广东 广州 510632
3 华东师范大学精密光谱科学与技术国家重点实验室,上海 200062
4 国防科技大学南湖之光实验室,湖南 长沙 410073
5 国防科技大学高能激光技术湖南省重点实验室,湖南 长沙 410073
超快激光相干合成(CBC)技术是突破单路飞秒光纤激光功率极限的重要方法。基于随机并行梯度下降(SPGD)算法和光纤拉伸器进行锁相控制,实现了16路超快光纤激光高效率填充孔径相干偏振合成,得到的合成输出功率为15 W,合成效率为94%,相位控制闭环状态下的锁相残差为(为波长),合成后压缩脉冲宽度为633 fs。通过进一步加入光束指向控制,可实现更高功率、更高效率的超快光纤激光相干合成输出。
超快激光 光纤激光 相干合成 相干偏振合成