顾帅 1皮鹏程 2廉正刚 2,*王鑫 1[ ... ]娄淑琴 1,**
作者单位
摘要
1 北京交通大学电子信息工程学院通信与信息系统北京市重点实验室,北京 100044
2 武汉长盈通光电技术股份有限公司,湖北 武汉 430074
空芯微结构光纤的弯曲损耗是决定其能否真正应用到光纤陀螺中的一个核心指标。设计并成功拉制出一款具有超低弯曲损耗的19芯空芯光子带隙光纤,通过与拉制的具有相近纤芯直径的空芯反谐振光纤进行对比,详细探究了空芯微结构光纤弯曲损耗的产生机理,证明了空芯光子带隙光纤具有更优异的抗弯曲特性。使用对称缠绕法,在0.25 cm的极限弯曲半径下,实验测量得到的空芯光子带隙光纤的弯曲损耗为每圈3.63×10-3 dB @1624 nm,这是目前实验报道的空芯微结构光纤在最小弯曲半径下的最低弯曲损耗。面向光纤陀螺的应用需求,首次实验研究了在不同张力下空芯光子带隙光纤敏感环的插入损耗的变化情况。研究结果显示,随着绕制张力的增加,环体插入损耗显著增加,因此宜在小张力条件下进行空芯光子带隙光纤敏感环的绕制。研究成果对空芯微结构光纤在光纤陀螺领域的实用化进程有着重要的推进作用。
光纤光学 光纤设计与制作 光纤测量 光纤传感 光纤陀螺 
中国激光
2023, 50(6): 0606003
作者单位
摘要
1 华中科技大学武汉国家光电研究中心,湖北 武汉 430074
2 武汉长进激光技术有限公司,湖北 武汉 430206
为了提升铒镱共掺光纤的抗辐照性能,以适用于远距离太空通信应用,采用改进的化学气相沉积(MCVD)方法制备了抗辐照铒镱共掺光纤。在常温下使用Co60辐射源对自研铒镱共掺光纤进行剂量为300 Gy和1000 Gy、平均剂量率为0.2 Gy/s的辐照。在940 nm和1550 nm处,该光纤在300 Gy辐照剂量下的辐致吸收(RIA)分别为0.10 dB/m和0.19 dB/m,在1000 Gy辐照剂量下的RIA分别为0.46 dB/m和0.37 dB/m。搭建了铒镱共掺光纤放大器(EYDFA)进行增益测试,采用输入功率为40 mW的1550 nm信号与940 nm的泵浦源,泵浦功率为7.3 W时其辐致增益变化(RIGV)分别为0.2 dB(300 Gy)和0.7 dB(1000 Gy)。
光纤光学 铒镱共掺光纤设计与制备 抗辐照性能 光纤通信 铒镱共掺光纤放大器 
中国激光
2022, 49(22): 2215001
作者单位
摘要
1 山东富通光导科技有限公司,山东 济南 250119
2 成都富通光通信技术有限公司,四川 成都 611731
3 上海大学特种光纤与光接入网省部共建国家重点实验室培育基地/特种光纤与先进通信国际合作联合实验室,上海 200444
采用一种具有中心凹陷的三角芯+环型的折射率剖面设计,利用外部气相沉积(OVD)工艺制备了新型非零色散位移G.655.D光纤。实验结果表明:在1550 nm和1625 nm波长处,光纤的衰减值分别为0.195 dB/km和0.203 dB/km,截止波长为1200 nm;将光纤绕在半径为25 mm的圆柱体上100圈,此时其在1550 nm和1625 nm波长处的宏弯损耗值分别低于0.027 dB和0.045 dB;该光纤在1530~1625 nm波段的色散为1.6~9.5 ps/(nm·km),尤其是在1550 nm波长处,其有效面积达到72 μm2,比常规G.653光纤大1.4倍。通过这种设计和方法制备的光纤可以实现零色散波长的平移,获得良好的纵向色散均匀性、较低的弯曲损耗以及较大的有效面积,适用于1530~1625 nm波段的密集波分复用应用,在长距离光纤通信中对四波混频(FWM)、交叉相位调制(XPM)等非线性效应具有较好的抑制作用,可以减少色散管理成本,具有非常重要的应用价值。
光纤光学 外部气相沉积工艺 G.655.D光纤 大有效面积 非零色散位移 密集波分复用 光纤设计与制造 
中国激光
2022, 49(23): 2306004
作者单位
摘要
1 北京航空航天大学仪器科学与光电工程学院,北京 100191
2 锐光信通科技有限公司,湖北 武汉 430074
光子带隙光纤具有弯曲损耗小、对环境变化不敏感等优点,是极端应用条件下高稳定光纤陀螺的理想光纤。但光子带隙光纤的传输损耗大,缺乏适用于光纤陀螺的低损耗、小模场光子带隙光纤。提出了独立反谐振纤芯光纤构型,将纤芯与包层进行空间隔离,利用纤芯壁反谐振效应抑制基模与表面模的耦合,利用反谐振与光子带隙双重效应将光限制在纤芯中传输,从而实现了光子带隙光纤小模场、低损耗的特性。理论分析结果表明,所提出的光纤构型可将模场直径为~8 μm的光子带隙光纤的损耗降低至<3.5 dB/km。采用两步法制备的光纤基本复现了设计结构,但占空比与设计值存在偏差,导致带隙偏移,实验测得所制备光纤的最小损耗为~25 dB/km@1200 nm。
光纤光学 光纤设计 光子带隙光纤 低损耗 小模场直径 
中国激光
2022, 49(19): 1906002
作者单位
摘要
1 华中科技大学武汉光电国家研究中心,湖北 武汉 430074
2 武汉长进激光技术有限公司,湖北 武汉 430206
采用改进的化学气相沉积工艺结合溶液掺杂技术成功制备了一种低数值孔径部分掺杂纺锤形光纤。该光纤的数值孔径约为0.05,镱离子在纤芯中的掺杂直径比约为77%,光纤两端纤芯和包层的直径分别为25 μm和400 μm,中间部分纤芯和包层的直径分别为37.5 μm和600 μm。搭建976 nm双端泵浦光纤放大器,该光纤最终实现了4.188 kW 的单模激光输出,斜率效率为82.8%,最高功率下的光束质量因子约为1.3,其输出功率的继续提升受限于受激拉曼散射效应。
光纤光学 掺镱光纤 光纤设计 横向模式不稳定 受激拉曼散射 光束质量 
中国激光
2022, 49(13): 1315002
Author Affiliations
Abstract
1 National Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing100124, China
2 Institute of Photonics Technology, Jinan University, Guangzhou510632, China
High-power fiber lasers have experienced a dramatic development over the last decade. Further increasing the output power needs an upscaling of the fiber mode area, while maintaining a single-mode output. Here, we propose an all-solid anti-resonant fiber (ARF) structure, which ensures single-mode operation in broadband by resonantly coupling higher-order modes into the cladding. A series of fibers with core sizes ranging from 40 to 100 μm are proposed exhibiting maximum mode area exceeding 5000 μm2. Numerical simulations show this resonant coupling scheme provides a higher-order mode (mainly TE01, TM01, and HE21) suppression ratio of more than 20 dB, while keeping the fundamental mode loss lower than 1 dB/m. The proposed structure also exhibits high tolerance for core index depression.
fiber design laser amplifiers modeling and optimization optical devices optical materials 
High Power Laser Science and Engineering
2021, 9(2): 02000e23
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha410073, China
2 Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan430074, China
Power scaling based on traditional ytterbium-doped fibers (YDFs) is limited by optical nonlinear effects and transverse mode instability (TMI) in high-power fiber lasers. Here, we propose a novel long tapered fiber with a constant cladding and tapered core (CCTC) along its axis direction. The tapered-core region of the fiber is designed to enhance the stimulated Raman scattering (SRS) threshold and suppress higher-order mode resonance in the laser cavity. The CCTC YDF was fabricated successfully with a modified chemical vapor deposition (MCVD) method combined with solution doping technology, which has a cladding diameter of 400 μm and a varying core with a diameter of ~24 μm at both ends and ~31 μm in the middle. To test the performance of the CCTC fiber during high-power operation, an all-fiber laser oscillator based on a CCTC YDF was investigated experimentally. As a result, a maximum output power of 3.42 kW was achieved with an optical-to-optical efficiency of 55.2%, although the TMI effect was observed at an output power of ~3.12 kW. The measured beam quality (M2 factor) was ~1.7, and no sign of the Raman component was observed in the spectrum. We believe that CCTC YDF has great potential to simultaneously mitigate the SRS and TMI effects, and further power scaling is promising by optimizing the structure of the YDF.
fiber design high power stimulated Raman scattering transverse mode instability ytterbium-doped fiber 
High Power Laser Science and Engineering
2021, 9(2): 02000e21
作者单位
摘要
山东大学 信息科学与工程学院 山东省激光技术与应用重点实验室, 山东 青岛 266200
晶体光纤是一种新型的高性能光纤材料,具有稀土离子掺杂浓度高、传光性好、耐高温、耐腐蚀等优点.晶体光纤在激光及传感方面具有巨大的应用潜力,然而至今还没有成功制备出真正意义上的同时具有晶体纤芯和晶体包层的小芯径晶体光纤.与传统的玻璃光纤相比,晶体光纤的制备工艺更加复杂,如何对晶体光纤制备工艺进行完善和创新是当前需要解决的重要问题.为了探索提高晶体光纤质量的途径,本文以晶体光纤的四种制备技术为主线,回顾了晶体光纤及其制备方法的发展历程,讨论了每种制备方法的局限性,对晶体光纤目前的应用状况进行了总结,并对其未来发展趋势进行了展望.
光纤材料 晶体光纤 光纤设计与制造 激光加热基座法 微下拉法 无粘合剂键合法 熔融芯法 Fiber materials Crystal fiber Fiber design and fabrication Laser heated pedestal growth Micro-pulling-down Adhesive-free bonding Molten core 
光子学报
2019, 48(11): 1148003
作者单位
摘要
1 武汉长盈通光电技术有限公司, 湖北 武汉 430205
2 北京交通大学电子信息工程学院, 北京 100044
光纤作为光信息和光能量的传输元器件已成为基础建设不可或缺的组成部分。针对功能光纤进行概括性介绍。着重介绍了微结构光纤的导光机理以及制备方案。微结构光纤由于其实现了灵活的预制棒制备方式、空芯传输以及理论上的超低衰耗,广泛地应用于光电传感和激光器应用。未来光纤发展的趋势将是光、电功能集成于一根光纤中,详细介绍了纳米机械光纤的制备和潜在应用,为全光器件和光集成技术发展提供重要的研究方向。
光纤光学 光纤设计与制造 微结构光纤 光子晶体光纤 光微机电器件 
激光与光电子学进展
2019, 56(17): 170615
Author Affiliations
Abstract
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
A large-mode-area neodymium-doped silicate photonic bandgap fiber was theoretically designed and experimentally demonstrated. The relative index step between the high-index rods and the background glass was ~0.5%, which is the lowest cladding index difference reported on rare-earth-doped all-solid photonic bandgap fibers to our knowledge. An output power of 3.6 W with a slope efficiency of 31% was obtained for a 100-cm-long fiber.
060.2280 Fiber design and fabrication 060.3510 Lasers, fiber 060.5295 Photonic crystal fibers 
Chinese Optics Letters
2018, 16(8): 080601

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!