Shengfu Cheng 1,2†Xuyu Zhang 3,4Tianting Zhong 1,2Huanhao Li 1,2[ ... ]Puxiang Lai 1,2,7,*
Author Affiliations
Abstract
1 The Hong Kong Polytechnic University, Department of Biomedical Engineering, Hong Kong, China
2 The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, China
3 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Key Laboratory for Quantum Optics, Shanghai, China
4 University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Shanghai, China
5 University of Science and Technology of China, Department of Optics and Optical Engineering, Hefei, China
6 University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
7 The Hong Kong Polytechnic University, Photonics Research Institute, Hong Kong, China
Transmission matrix (TM) allows light control through complex media, such as multimode fibers (MMFs), gaining great attention in areas, such as biophotonics, over the past decade. Efforts have been taken to retrieve a complex-valued TM directly from intensity measurements with several representative phase-retrieval algorithms, which still see limitations of slow or suboptimum recovery, especially under noisy environments. Here, we propose a modified nonconvex optimization approach. Through numerical evaluations, it shows that the optimum focusing efficiency is approached with less running time or sampling ratio. The comparative tests under different signal-to-noise levels further indicate its improved robustness. Experimentally, the superior focusing performance of our algorithm is collectively validated by single- and multispot focusing; especially with a sampling ratio of 8, it achieves a 93.6% efficiency of the gold-standard holography method. Based on the recovered TM, image transmission through an MMF is realized with high fidelity. Due to parallel operation and GPU acceleration, our nonconvex approach retrieves a 8685 × 1024 TM (sampling ratio is 8) with 42.3 s on average on a regular computer. The proposed method provides optimum efficiency and fast execution for TM retrieval that avoids the need for an external reference beam, which will facilitate applications of deep-tissue optical imaging, manipulation, and treatment.
transmission matrix phase retrieval multimode fiber imaging wavefront shaping 
Advanced Photonics Nexus
2023, 2(6): 066005
安康 1,2李汶芳 1,2段晓礁 1,2吴石琳 1,2[ ... ]王珏 1,2,*
作者单位
摘要
1 重庆大学光电工程学院光电技术及系统教育部重点实验室, 重庆 400044
2 工业CT无损检测教育部工程研究中心, 重庆 400044
闪烁屏信号串扰是影响X射线探测器空间分辨率的主要因素,基于点扩散函数理论对光纤耦合GAGG_Ce单晶闪烁屏型CCD/CMOS探测器的空间分辨率进行了研究。利用蒙特卡罗程序EGSnrc和光学仿真软件Zemax分别对GAGG_Ce单晶闪烁屏射线串扰和荧光串扰进行了仿真。仿真结果表明,对于低能X射线辐射成像,荧光串扰是影响探测器空间分辨率的最主要因素。此外,研究了通过降低光纤面板数值孔径以抑制荧光串扰的方法,得到了光纤面板数值孔径与探测器空间分辨率和X射线转换因子间的关系,并通过自制CCD探测器测试验证了仿真结果的正确性。
成像系统 光纤成像 GAGG_Ce 数值孔径 串扰 空间分辨率 X射线转换因子 
光学学报
2022, 42(1): 0111001
作者单位
摘要
北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
搭建实验平台,把26个字母的图像传入光纤,并在输出端采集散斑图。把散斑图展开到HSV色彩空间中,单使用V分量进行分类能达到不错的分类准确率,且能缩减训练时长。在预处理后,分别使用具有不同层数卷积结构的神经网络、卷积神经网络和支持向量机(CNN+SVM)算法、SVM算法对散斑图进行分类。测试结果发现,使用4420张散斑图作为训练集,3层卷积结构的神经网络的识别准确率为88%,4层卷积结构的神经网络的识别准确率为95%,CNN+SVM算法的识别准确率为98%,而SVM算法的识别准确率达到了100%。实验结果表明,把机器学习算法应用在光信号上,同样可以对多模光纤散斑图进行分类,当图像特征相对明显时,直接使用SVM算法对光纤输出散斑进行识别,可以大大提升多模光纤输出散斑图的识别准确率。
光纤光学 光纤成像 散斑图 深度学习 SVM算法 
光学学报
2020, 40(13): 1306001
Author Affiliations
Abstract
1 University of Central Florida, CREOL, The College of Optics and Photonics, Orlando, Florida, United States
2 Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, State Key Laboratory of Luminescence and Applications, Changchun, China
We demonstrate a deep-learning-based fiber imaging system that can transfer real-time artifact-free cell images through a meter-long Anderson localizing optical fiber. The cell samples are illuminated by an incoherent LED light source. A deep convolutional neural network is applied to the image reconstruction process. The network training uses data generated by a setup with straight fiber at room temperature (~20 ° C) but can be utilized directly for high-fidelity reconstruction of cell images that are transported through fiber with a few degrees bend or fiber with segments heated up to 50°C. In addition, cell images located several millimeters away from the bare fiber end can be transported and recovered successfully without the assistance of distal optics. We provide evidence that the trained neural network is able to transfer its learning to recover images of cells featuring very different morphologies and classes that are never “seen” during the training process.
fiber imaging cell imaging deep learning microstructured optical fiber transverse Anderson localization 
Advanced Photonics
2019, 1(6): 066001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!