作者单位
摘要
中国空间技术研究院 北京空间机电研究所,北京 100194
三通道355 nm光学鉴频器广泛应用在星载测风激光雷达回波信号鉴频过程中,是实现双边缘风速多普勒鉴频的核心元件,其指标与可靠性决定了系统的探测精度。研制了基于压电换能器(piezo-electric transducer, PZT)调谐的355 nm三通道标准具鉴频模块,模块有效口径35 mm,峰值透过率75%,自由光谱范围12.5 GHz,半高宽1.7 GHz。通过三通道测试系统对自由光谱范围、半高宽、峰值透过率、调谐系数等指标进行了测试。结果表明:当外部驱动电压为75 V时,峰值透过率分别为0.859、0.878和0.735,半高全宽分别为1.843 GHz、1.882 GHz和1.611 GHz,调谐系数为1.96 GHz/V、1.93 GHz/V和1.88 GHz/V。针对光学鉴频模块3个通道PZT调谐系数不一致的情况,分析出对风速误差的影响范围为±0.1 m/s。通过对闭环控制系统进行测试,该系统可实现对355 nm激光发射频率的实时锁定,解决了光学鉴频模块每次工作状态初始位置不一致带来的问题,提高了风速鉴频精度,可实现锁定时间长达30 min以上,满足了星载测风激光雷达的应用需求。另外,仿真研究表明:当三通道光学鉴频模块间隔变化0.08 nm时,引起的风速误差为1 m/s。
测风激光雷达 光学鉴频器 自由光谱范围 峰值透过率 闭环反馈控制 wind lidar optical frequency discriminator free spectral range peak transmittance closed-loop feedback control 
应用光学
2023, 44(4): 904
作者单位
摘要
1 中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
研究了光学鉴频器的精密温控方法及其对鉴频光学谱线、鉴频误差的影响。设计了双层温控结构及电路,采用三线制等长接法、双路电流源方向切换等方式来减小引线电阻影响,消除了两路电流源失配。研究了基于现场可编程门阵列(FPGA)的模拟和数字混合温度控制方法,不同温度设置点的控制实验显示温控精度达到了0.0062 ℃,测量误差为0.0036 ℃。用单频紫外激光测试了该温控精度对光学鉴频器的谱线移动、透过率的影响边界,在该控制精度下的透过率谱线平移为0.11 MHz,造成的速度测量误差为0.0195 m/s。
测量 鉴频器 温度 光谱 多普勒频移 
中国激光
2018, 45(7): 0704008
作者单位
摘要
西安理工大学 机械与精密仪器工程学院, 西安 710048
基于光纤Mach-Zehnder干涉仪双边缘检测技术, 提出并设计了一套全光纤非相干测风激光雷达系统, 对多普勒频移的提取和风速反演算法进行了理论分析, 针对大气分子散射信号的特点, 对光纤Mach-Zehnder鉴频系统进行了优化设计.应用美国标准大气模型, 对系统的灵敏度、信噪比以及测量误差进行了数值仿真.仿真结果表明, 对532 nm波长的地基分子散射测风激光雷达, 当垂直距离分辨率为300 m, 进行1 000次激光脉冲累计平均后, 得到径向探测距离达到20 km, 径向风速在±100 m/s的范围内时, 径向风速误差小于1.4 m/s, 说明此系统可以进行远距离大尺度风速的测量, 为新型小型化测风激光雷达的开发及研制提供了一种可行的技术方案.
激光雷达 多普勒测风 数值仿真 光纤Mach-Zehnder干涉仪 双边缘检测技术 风速反演 鉴频系统 Lidar Doppler wind measurement Numerical simulation Optical fiber Mach-Zehnder interferometer Double-edge technique Wind velocity retrieval Frequency discriminator system 
光子学报
2015, 44(7): 0701003
作者单位
摘要
西安理工大学 机械与精密仪器工程学院,西安 710048
Mach-Zehnder(M-Z)干涉仪可作为鉴频器件应用于多普勒测风激光雷达系统中.鉴于一般M-Z干涉仪的稳定性差,不易于调节的缺点,提出一种基于双棱镜结构的新型双通道M-Z干涉仪作为多普勒测风激光雷达鉴频器件.在进行探测原理分析的基础上,利用光学设计软件对其鉴频系统结构进行了参量优化设计和系统仿真.通过设定实验参量并进行光线追迹模拟仿真实验结果,应用反演理论获得了风速值.利用多普勒频移公式计算获得理论风速并与仿真结果进行了对比,结果表明反演仿真风速与理论风速值基本吻合,标准差为0.46 m/s.此新型双通道M-Z干涉仪可以作为鉴频器件应用于多普勒测风激光雷达系统中,在光路的调节及提高系统稳定性上具有优势.
大气探测 激光雷达 多普勒测风 鉴频系统 双通道M-Z干涉仪 仿真分析 数据反演 Atmosphere measurement Lidar Doppler wind measurement Frequency discriminator system Dual channel M-Z interferometer Simulation analysis Data retrieval 
光子学报
2014, 43(1): 0101002
作者单位
摘要
1 大连理工大学电子信息与电气工程学部, 辽宁 大连 116024
2 中国航空工业集团公司洛阳电光设备研究所, 河南 洛阳 471009
目前GPS接收机载波跟踪环路往往采用易于硬件实现,但精度不高、跟踪速度慢的鉴别器。针对该现状,在现有CORDIC算法基础上加以改进,并在FPGA上完成了二象限反正切鉴相器和四象限反正切鉴频器的设计。在原有CORDIC算法上加入象限转换和相位转换功能,使反正切计算范围扩大至-180°~180°;通过增加鉴频器门限设定,消除了导航电文翻转带来的误差。该设计方案使载波跟踪鉴别器共用一个反正切模块,减少了硬件资源。最终仿真结果表明:改进后的鉴别器提高了鉴相与鉴频的精度,加快了稳定跟踪的速度。
GPS接收机 载波跟踪环 鉴相器 鉴频器 GPS receiver carrier tracking loop phase discriminator frequency discriminator CORDIC CORDIC 
电光与控制
2014, 21(2): 80
作者单位
摘要
1 哈尔滨工业大学 光电子技术研究所,哈尔滨 150001
2 哈尔滨工业大学 控制与仿真中心,哈尔滨 150001
3 宜春学院 理工学院,宜春 336000
提出一种双边缘测风激光雷达法布里-珀罗(F-P)干涉仪鉴频器的非线性比例-积分-微分(PID)控制方法。该方法利用发射激光在鉴频器校正通道的透过率作反馈进行F-P干涉仪鉴频器的稳定控制。首先给出F-P干涉仪鉴频器透过率的控制模型,由气压波动、温度变化和振动等引起的外界扰动被等效为施加在致动压电陶瓷上的扰动外力。为了进行扰动补偿,用新增的反正切函数设计了非线性PID控制器,提高了经典PID控制方法的反馈增益。仿真结果显示,与经典的PID控制相比,新的非线性控制方法可以使F-P干涉仪鉴频器在更短的时间达到稳定状态,并且稳态误差约减小到原来的1/20。
测风激光雷达 双边缘技术 鉴频器 非线性比例-积分-微分控制 压电陶瓷 lidar double-edge technique frequency discriminator nonlinear proportional-integral-derivative control piezoelectric ceramics 
强激光与粒子束
2010, 22(2): 238
作者单位
摘要
中国科学院上海光学精密机械研究所先进激光技术与应用系统实验室, 上海 201800
基于建立的车载直接探测激光雷达系统,对接收光学鉴频器进行了研究。针对边界层、对流层和平流层不同的气溶胶和大气分子浓度以及风速动态范围,同时采用直接探测的两种主要技术。利用多光束菲索(Fizeau)干涉仪(MFI)和阵列光电倍增管(PMT),接收气溶胶散射信号,获得边界层风速。采用双法布里-珀罗(Fabry-Perot)干涉仪(DFP)和光电倍增管探测器,分析分子散射信号,得到对流层风场。使用实际的激光雷达系统参数和大气模型参数,对两个鉴频器进行了优化设计,分析了它们的风速测量灵敏度和精度。多光束菲索干涉仪鉴频器系统在±50 m/s风速范围内测量灵敏度为1.3%/(m·s-1),高度分辨率为200 m,边界层内风速测量误差小于1 m/s。双法布里-珀罗干涉仪鉴频器系统在±100 m/s风速范围内的测量灵敏度约为0.3%/(m·s-1),高度分辨率为1000 m,对流层风速测量误差小于3 m/s。
激光技术 多普勒激光雷达 光学鉴频器 风速 法布里-珀罗 菲索 
中国激光
2006, 33(10): 1339
作者单位
摘要
哈尔滨工业大学光电子技术实验室,哈尔滨 150001
综述了目前脉冲激光偏频锁定的发展状况,总结了各种脉冲激光偏频锁定的方法,并提出了宽带全数字鉴频方法,带宽达到2~100MHz,以及以鉴频器为基础的简单偏频锁定系统设计.介绍了电光外调制CO2脉冲激光与连续CO2激光之间的偏频锁定实验,光脉冲重复频率为10kHz,脉宽为5μs.实验频率锁定结果良好,频率稳定度为1.27×10-7(阿仑方差).
激光脉冲 偏频锁定 全数字鉴频 频率稳定度 
中国激光
2001, 28(9): 772

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!