作者单位
摘要
1 省部共建高品质特殊钢冶金与制备国家重点实验室、 上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院, 上海 200444
2 中国科学院安徽光学精密机械研究所, 安徽省光子器件与材料重点实验室, 安徽 合肥 230031
搭建气体动力学悬浮无容器激光加热装置耦合皮秒级时间门控拉曼光谱仪, 突破常规加热法的温度与坩埚材料的限制的同时, 依靠皮秒级脉冲激光极短的测量周期大幅度屏蔽高温极端条件下黑体辐射对拉曼信号的干扰。 并利用该平台首次原位测定了高熔点MgTi2O5超高温下(1 903、 1 953和2 003 K)的高信噪比熔体拉曼光谱。 并通过耦合三代增强型电荷耦合探测器(ICCD)与纳秒级脉冲激光实现测定MgTi2O5晶体样品室温(RT)到1 673 K的完整温度范围的原位拉曼光谱。 在RT升至1 953 K的升温过程中晶体的拉曼光谱出现展宽和红移现象, 相对强度降低, 当温度升高到熔体(2 003 K)成为单一宽泛的包络线, 表明此时晶体的长程有序的结构已经被破坏, 体系内微结构发生本质改变。 运用密度泛函理论(DFT)计算其常温拉曼光谱, 比照实验光谱, 对主要振动模式进行了归属分析, 拉曼光谱位移低于350 cm-1的低波数区的振动主要归属于晶体的晶格振动, 中波数区域485 cm-1的振动峰为Ti—O—Ti弯曲振动, 主要特征峰648 cm-1处为TiO6八面体内O—Ti伸缩振动; 787 cm-1处为TiO6八面体内O—Ti—O的弯曲振动。 对熔体结构运用量子化学从头计算法, 模拟了系列团簇模型的拉曼光谱, 获得了特征振动模式的波数和散射截面, 实验拉曼光谱采用散射截面校正后, 解谱并定量分析了熔体中团簇结构的分布。 定量分析显示, MgTi2O5晶体熔化后, 存在TiO4四面体构型(不同构型的Qi相对摩尔分数分别为54.6%Q0、 20.1%Q1、 5.0%Q2、 4.8%Q3, Qi为不同桥氧数i的钛氧四面体)和TiO6八面体构型(H0的相对摩尔分数为14.8%, H0为孤立的六配位钛氧八面体)。 Ti4+主要以孤立四面体结构Q0、 二聚体结构Q1四配位形式存在, 少部分以孤立的钛氧八面体H0六配位的形式存在。 结果表明: MgTi2O5熔体成分中占较大比例的孤立结构, 破坏了体系网络连接性, 抑制了玻璃形成能力, 因此该高温熔体不具备形成玻璃的条件。 在升温过程中MgTi2O5晶体的拉曼光谱显示无相变发生; 熔融过程中, 晶体微结构中的Ti—O多面体结构由单一TiO6型转变为TiO4与TiO6型共存。
MgTi2O5晶体 超高温原位拉曼光谱 熔体结构 密度泛函理论 量子化学从头计算 MgTi2O5 crystal In situ high temperature Raman spectroscopy Melt micro-structure Density functional theory Quantum chemistry ab initio calculations 
光谱学与光谱分析
2023, 43(8): 2507
作者单位
摘要
1 上海交通大学 核科学与工程学院上海 200240
2 中国核动力研究设计院 核反应堆系统设计技术重点实验室成都 610213
大量现有研究表明,使用合适的表面改性方法能够强化沸腾换热效果,使其在压水堆内有着广阔的潜在应用前景。但对于堆内高温高压碱性环境,这种强化换热效果能否长时间维持却鲜有研究。使用激光加工的方式,在不锈钢板状试样表面分别加工微槽、微孔、微柱三种微结构,将试样置于模拟实际堆内工况的高温高压反应釜中开展长达200 d的腐蚀实验,并对腐蚀前后试样进行池式沸腾实验与可视化研究。结果表明:三种微结构试样表面临界热流密度(Critical Heat Flux,CHF)均随腐蚀时间的增加先升高后降低,其中微孔试样在核态沸腾起始有着最大的气泡生成速率,微槽试样有着最高的CHF。
腐蚀 表面改性 沸腾换热 微结构 可视化 Corrosion Surface modification Boiling heat exchange Micro-structure Visualization 
核技术
2023, 46(6): 060606
作者单位
摘要
1 武汉长盈通光电技术股份有限公司,武汉 430205
2 北京交通大学 电子信息工程学院,北京 100044
空芯光纤有着不可替代的物理特性,成为科研机构珍贵的基础研究课题,但由于其整体性能和配套应用并不成熟,产业界一直保持观望态度。近些年来,随着空芯光纤损耗指标的不断优化,多个产业应用案例的成功推进,空芯光纤逐渐得到工业界的进一步重视。文章梳理了3类空芯光纤,即空芯布拉格包层光纤、空芯光子带隙光纤和空芯反谐振光纤,重点介绍了其光学工作原理和测试手段,也结合通信、激光传能和传感领域的应用情况分析了空芯光纤的优势。文章最后对标通信单模光纤对空芯光纤的未来技术趋势做出了展望。
光纤 空芯光纤 微结构 环境条件 光纤测试 传能光纤 激光器 optical fiber hollow core optical fiber micro-structure environmental conditions optical fiber test power delivery fiber laser 
光通信研究
2023, 49(2): 9
作者单位
摘要
1 广东工业大学 机电工程学院, 广州 510006
2 东莞逸昊金属材料科技有限公司, 东莞 523686
为了优化非晶合金与晶体金属的激光焊接工艺, 运用最大平均功率300 W脉冲红外激光焊接锆基非晶合金Zr57Nb5Cu15.4Ni12.6Al10与440、304、17-4PH不锈钢。采用材料分析手段和力学测试方法对实验焊接接头的材料微观组织、成分组成以及力学性能进行了表征, 取得了合适的激光偏移量焊接工艺参数、焊接接头微观组织特性数据及其力学性能数据。结果表明, 激光焦点往不锈钢侧偏移0.2 mm~0.3 mm可以使焊接熔化均匀并有效提高抗弯强度, 通过合适的焊接工艺使非晶合金与17-4PH接头抗弯强度达339 MPa; 非晶合金与3种不锈钢的激光焊接接头主要分为熔化混合区与热影响区, 熔化混合区中发现了呈树枝状与颗粒状的结晶组织, 焊后通过低温退火可使抗弯强度提升14%~48%。此研究结果对扩大锆基非晶合金在各个领域的应用具有指导意义。
激光技术 焊接工艺 微观组织特性 锆基非晶合金 不锈钢 laser technique welding process micro-structure characteristic Zr-based bulk metallic glass stainless steel 
激光技术
2023, 47(2): 185
作者单位
摘要
1 中国航天 宇航元器件工程中心,北京 100029
2 中国电子科技集团公司 第二十三研究所,上海 201900
以航天器舱外用交联乙烯-四氟乙烯共聚物(X-ETFE)线缆为试验对象,采用5倍加速因子对X-ETFE线缆累计进行了8000等效太阳小时(ESH)真空紫外(VUV)辐照,并通过极限耐电压、绝缘材料电阻测试分析X-ETFE线缆电性能,采用FTIR和SEM表征X-ETFE材料分子结构和微观形貌,以此研究不同VUV辐照时间对X-ETFE线缆的影响。试验结果表明,随着VUV辐照时间的增加,材料表面累积了碳而发生暗化,线缆外观颜色逐渐变为深棕色;X-ETFE线缆的极限耐压和绝缘电阻呈总体下降趋势,但整体电性能水平未发生本质变化; X-ETFE材料在1628 cm−1处的吸收峰逐步增大,说明X-ETFE材料分子链中的−C=C−自由基团随辐照时间而增多,致使材料表面出现了微裂纹现象。
交联乙烯-四氟乙烯线缆 真空紫外辐照 极限耐电压 绝缘电阻 微观结构 X-ETFE cable VUV radiation ultimate withstand voltage insulation resistance micro structure 
强激光与粒子束
2022, 34(11): 114003
作者单位
摘要
1 苏州大学 机电工程学院 激光制造技术研究所,江苏 苏州 215021
2 中国飞机强度研究所 结构冲击动力学航空科技重点实验室,陕西 西安 710065
3 苏州大学 光电科学与工程学院,江苏 苏州 215006
铝合金激光吸收率低、导热率高,其激光熔化沉积(LMD)显微组织性能受温度场影响大。为分析环形束LMD铝合金熔池温度场及其影响,优化成形质量及成形件性能,采用送气保护式LMD技术,进行了AlSi10Mg铝合金成形实验,系统分析了熔池温度场的形态及其变化,以及温度场对成形质量、孔隙率、显微组织性能的影响机理。结果表明:环形束LMD铝合金熔池温度场总体形态呈开口向扫描方向的“半月牙”状,随着激光功率的增大,温度场形态愈发尖锐,其高温率、温度梯度和平均温度也相应增大。温度场平均温度的提升可增加激光吸收率,粗化显微组织,减小显微硬度,温度场显著影响成形件孔隙率从而改变拉伸性能。最终在平均温度为857.7 ℃时降低孔隙率至2.1%,得到抗拉强度为305.6 MPa,延伸率为5.7%,高出铸件52.5%,为LMD铝合金温度场及显微组织性能控制提供了理论指导。
激光熔化沉积 铝合金 温度场 孔隙率 显微组织性能 laser metal deposition aluminum alloy temperature field porosity rate properties of micro-structure 
红外与激光工程
2022, 51(5): 20210366
姚晶晶 1,2,*闫玥儿 3章若红 1罗婵 1[ ... ]唐颐 2
作者单位
摘要
1 上海市质量监督检验技术研究院, 上海 201114
2 复旦大学化学系, 上海 200433
3 复旦大学图书馆中华古籍保护研究院, 上海 200433
作为传承人类文明和见证历史发展的重要载体, 传统手工纸老化机制的研究及老化状态的评价至关重要。 手工纸张老化后各项宏观性能的降低归根究底来源于微观尺度上物理和化学性能的衰减, 因此传统手工纸微观尺度结构的表征分析是深入理解纸张老化机制和准确评估老化状态的关键, 也是发挥手工纸使用价值的基础。 光谱分析因其出色的时空分辨率, 快速响应, 高信噪比和良好的灵敏度备受关注, 而其无损或微损的特点使珍贵纸质样品的测试不再受到限制, 实现从微纳米尺度获得纸张的老化状态信息。 基于手工纸的化学元素、 化学结构、 组分以及微观形态等方面, 系统阐述近年来发展的红外光谱(IR)、 紫外可见光谱(UV/Vis)、 拉曼光谱(Raman)、 核磁共振(NMR)、 太赫兹时域光谱(THz)、 X射线光谱(X-ray)、 荧光光谱(LIFS)、 光谱与显微镜联用等无损/微损表征技术, 旨在从微纳米尺度获得纸张内部及表面多层次结构特性, 并希望将其作为宏观性质的切入点, 深挖手工纸在老化进程中宏观与微观之间的联系, 从而促进手工纸在复杂环境中多尺度评价体系的建立以及老化机理的揭示, 为手工纸保存状态的评估及修复工作的实施提供重要依据。
手工纸 光谱技术 老化降解 无损表征 微观结构 Handmade paper Spectral technology Aging and degradation Non-destructive characterization Micro structure 
光谱学与光谱分析
2021, 41(5): 1559
作者单位
摘要
西安交通大学电子与信息学部电子科学与工程学院, 陕西省信息光子技术重点实验室, 陕西 西安 710049
晶体材料微加工技术是制备微电子器件、微机电系统器件的关键技术。飞秒激光辐照结合湿法腐蚀加工技术不仅可以去除飞秒激光诱导微结构表面缺陷,提高微结构表面光滑度,还在制备高纵横比结构、内部通道等方面具有独特的优势,为晶体加工开辟了新的道路。本文概述了飞秒激光辐照结合湿法腐蚀加工技术特点、原理和优势,总结了其在硅、碳化硅、蓝宝石晶体材料微结构制备中的研究进展,讨论了该技术的不足及其未来发展。
激光光学 飞秒激光 湿法腐蚀 晶体材料 微纳结构 
激光与光电子学进展
2020, 57(11): 111419
作者单位
摘要
南京理工大学电子工程与光电技术学院, 南京 210094
三维微结构在光陷阱、隐身与光场调控、超高压密封、人工生物材料等领域具有重要的应用价值。三维微结构的加工制造方法, 包括激光直写、光刻、电子与化学蚀刻等先进制造方法发展迅速, 其检测仪器有扫描电镜(SEM)、原子力显微镜(AFM)、激光共焦显微镜、低相干干涉显微镜, 但这些检测仪器一直受到西方发达国家垄断。阐述国内在低相干干涉显微测量方法方面的研究进展, 包括干涉显微镜的光学设计方法、装校流程、宽谱低相干干涉图处理与微结构形貌复原方法, 并给出了不确定度评定结果。结果表明: 仪器三维形貌合成不确定度为0.9 nm, 最大微结构轴向分辨率为0.13 nm。
三维形貌 微结构 干涉检测 显微镜 3D topography micro-structure interference detection microscope 
电光与控制
2019, 26(11): 1
作者单位
摘要
华中科技大学光学与电子信息学院, 湖北武汉 430074
利用 Zemax光学设计软件设计了一款适用于家用小型汽车前照远光灯的汽车反光杯。针对国标 GB 7258—2017《机动车运行安全技术条件》性能要求, 对普通的汽车反光杯采取结构改良等优化措施, 使其二次配光效果更好, 中央光斑进一步集中, 视觉效果更加柔和。仿真结果表明: 系统有效作用距离为 150 m, 10 m处中央光斑平均光照强度为 4 552 lx, 出光角为.10°~+10°。各项主要性能指标均达到国家最新标准, 在不增加工业生产成本的前提下, 具有适应未来批量 3D打印生产模式的潜力。
光学设计 前照远光灯 微结构 棱状面反光杯 组合反光杯 optical design front-illuminated high beam micro-structure prismatic reflector combined reflector 
光学仪器
2019, 41(4): 27

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!