Author Affiliations
Abstract
1 Soochow University, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Suzhou, China
2 Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou, China
3 Macau University of Science and Technology, Macao Institute of Materials Science and Engineering, Macau, China
Near-infrared (NIR) light has shown great potential for military and civilian applications owing to its advantages in the composition of sunlight, invisibility to human eyes, deeper penetration into biological tissues, and low optical loss in optical fibers. Therefore, organic optoelectronic materials that can absorb or emit NIR light have aroused great scientific interest in basic science and practical applications. Based on these NIR organic optoelectronic materials, NIR optoelectronic devices have been greatly improved in performance and application. In this review, the representative NIR organic optoelectronic materials used in organic solar cells, organic photodetectors, organic light-emitting diodes, organic lasers, and organic optical waveguide devices are briefly introduced, and the potential applications of each kind of device are briefly summarized. Finally, we summarize and take up the development of NIR organic optoelectronic materials and devices.
near-infrared organic optoelectronic materials organic solar cells organic light-emitting devices organic optical waveguides 
Advanced Photonics
2024, 6(1): 014001
Author Affiliations
Abstract
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou 510640, China
The stability of organic solar cells (OSCs) remains a major concern for their ultimate industrialization due to the photo, oxygen, and water susceptibility of organic photoactive materials. Usually, antioxidant additives are blended as radical scavengers into the active layer. However, it will induce the intrinsic morphology instability and adversely affect the efficiency and long-term stability. Herein, the antioxidant dibutylhydroxytoluene (BHT) group has been covalently linked onto the side chain of benzothiadiazole (BT) unit, and a series of ternary copolymers D18-Cl-BTBHTx (x = 0, 0.05, 0.1, 0.2) with varied ratio of BHT-containing side chains have been synthesized. It was found that the introduction of BHT side chains would have a negligible effect on the photophysical properties and electronic levels, and the D18-Cl-BTBHT0.05: Y6-based OSC achieved the highest power conversion efficiency (PCE) of 17.6%, which is higher than those based active layer blended with BHT additives. More importantly, the unencapsulated device based on D18-Cl-BTBHTx (x = 0.05, 0.1, 0.2) retained approximately 50% of the initial PCE over 30 hours operation under ambient conditions, significantly outperforming the control device based on D18-Cl (90% degradation in PCE after 30 h). This work provides a new structural design strategy of copolymers for OSCs with simultaneously improved efficiency and stability.
organic solar cells ternary copolymers antioxidant side chain photostability 
Journal of Semiconductors
2023, 44(8): 082202
作者单位
摘要
电子科技大学 物理学院, 成都 611731
采用综合考虑温度、电场强度、载流子浓度的普遍迁移率模型, 利用实际太阳能光谱和非富勒烯材料的吸收系数来计算载流子的产生, 结合漂移扩散方程、电流连续性方程等对高效率有机太阳电池进行理论建模。利用该模型计算了器件的电流-电压曲线、开路电压-光照强度曲线和短路电流-光照强度曲线。结果发现, 利用该模型计算的电流-电压曲线与实验数据符合很好, 其他两种曲线也与实验数据符合较好。此外, 利用该模型分析了能量无序度对器件性能的影响, 结果表明减小材料的能量无序度可以提高有机太阳电池的性能。
迁移率 非富勒烯 有机太阳电池 理论建模 能量无序度 mobility non-fullerene organic solar cells theoretical modeling energy disorder 
半导体光电
2023, 44(2): 204
Author Affiliations
Abstract
1 Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, SE-60174, Norrköping, Sweden
2 Wallenberg Wood Science Center, Department of Science and Technology (ITN), Linköping University, SE-60174, Norrköping, Sweden
With the emergence of new materials for high-efficiency organic solar cells (OSCs), understanding and finetuning the interface energetics become increasingly important. Precise determination of the so-called pinning energies, one of the critical characteristics of the material to predict the energy level alignment (ELA) at either electrode/organic or organic/organic interfaces, are urgently needed for the new materials. Here, pinning energies of a wide variety of newly developed donors and non-fullerene acceptors (NFAs) are measured through ultraviolet photoelectron spectroscopy. The positive pinning energies of the studied donors and the negative pinning energies of NFAs are in the same energy range of 4.3?4.6 eV, which follows the design rules developed for fullerene-based OSCs. The ELA for metal/organic and inorganic/organic interfaces follows the predicted behavior for all of the materials studied. For organic–organic heterojunctions where both the donor and the NFA feature strong intramolecular charge transfer, the pinning energies often underestimate the experimentally obtained interface vacuum level shift, which has consequences for OSC device performance.With the emergence of new materials for high-efficiency organic solar cells (OSCs), understanding and finetuning the interface energetics become increasingly important. Precise determination of the so-called pinning energies, one of the critical characteristics of the material to predict the energy level alignment (ELA) at either electrode/organic or organic/organic interfaces, are urgently needed for the new materials. Here, pinning energies of a wide variety of newly developed donors and non-fullerene acceptors (NFAs) are measured through ultraviolet photoelectron spectroscopy. The positive pinning energies of the studied donors and the negative pinning energies of NFAs are in the same energy range of 4.3?4.6 eV, which follows the design rules developed for fullerene-based OSCs. The ELA for metal/organic and inorganic/organic interfaces follows the predicted behavior for all of the materials studied. For organic–organic heterojunctions where both the donor and the NFA feature strong intramolecular charge transfer, the pinning energies often underestimate the experimentally obtained interface vacuum level shift, which has consequences for OSC device performance.
organic semiconductors organic solar cells pinning energies integer charge transfer interface dipoles 
Journal of Semiconductors
2023, 44(3): 032201
作者单位
摘要
北京交通大学 理学院, 光电子技术研究所, 发光与光信息教育部重点实验室, 北京 100044
非富勒烯受体(NFA)材料是现阶段非常受欢迎的有机光电材料之一。基于非富勒烯受体的有机体异质结(BHJ)太阳能电池发展迅速, 其单结能量转换效率(PCE)现已达到18%。有机半导体中单线态与三线态在磁场作用下的相互转换会影响其电子-空穴的解离与复合, 从而对光伏性能有一定的影响。此外, 三线态激子寿命和扩散距离较长, 三线态-电荷反应的几率较大, 增加光电流, 使得三线态材料对于光伏性能的提高具有一定的作用。因此, 本文主要从以下几个方面对非富勒烯有机太阳能电池进行叙述, 首先讨论了有机太阳能电池中电荷分离、重组及能量损失对开路电压的影响; 其次总结了有机太阳能电池磁场下自旋依赖的光物理过程及三线态材料在有机太阳能电池中的应用, 了解二者对提高光伏性能的影响; 最后对有机光伏性能的进一步提高以及有机半导体磁场下的自旋问题进行了展望。
非富勒烯有机太阳能电池 电荷分离与重组 能量损失 磁场效应 三线态受体材料 non-fullerene organic solar cells charge separation and recombination energy losses magnetic field effects triplet acceptor materials 
发光学报
2020, 41(12): 1598
作者单位
摘要
嘉应学院 物理与电子工程学院, 广东 梅州 514015
采用传输矩阵法研究了基于MoO3/Ag/MoO3(MAM)透明导电电极和ITO电极的聚合物太阳能电池的光学性能。分别对电池耦合层厚度、活化层厚度和金属电极进行了优化, 得到了优良效率的结构。结果表明,MAM与ITO有机太阳能电池在不同活性层厚度和不同光学间隔层厚度条件下有明显的光学性能差异; 对于薄活性层MAM电极器件(100nm), 最大短路电流密度可达到16.85mA/cm2, 比ITO器件提高了7.3mA/cm2, 而对于厚活性层MAM电极(270nm), ITO电极器件的光学性能明显优于MAM器件; 还通过改变光学间隔层LiF的厚度进行计算, 得出本仿真条件下两种结构性能差异的临界光学间隔层厚度为30nm。
传输矩阵法 透明导电电极 有机太阳能电池 光学性能 transport matrix method transparent conductive electrode organic solar cells optical properties 
光学技术
2020, 46(6): 660
Author Affiliations
Abstract
1 Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan
2 Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science and Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
3 Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
In this study, plasmonic nanostructures were examined to enhance the light harvesting of organic thin-film solar cells (OSCs) by multiple surface plasmon resonance (SPR) phenomena originating from the grating-coupled configuration with a Blu-ray Disc recordable (BD-R)-imprinted aluminum (Al) grating structure and the incorporation of a series of silver nanodisks (Ag NDs). The devices with such a configuration maximize the light utilization inside OSCs via light absorption, light scattering, and trapping via multiple surface plasmon resonances. Different types and sizes of metallic nanoparticles (NPs), i.e., gold nanoparticles (Au NPs), Ag nanospheres (Ag NSs), and Ag NDs, were used, which were blended separately in a PEDOT:PSS hole transport layer (HTL). The device structure comprised of grating-imprinted-Al/P3HT:PCBM/Ag ND:PEDOT:PSS/ITO. Results obtained from the J–V curves revealed that the power conversion efficiency (PCE) of grating-structured Al/P3HT:PCBM/PEDOT:PSS/ITO is 3.16%; this value is ~6% higher than that of a flat substrate. On the other hand, devices with flat Al and incorporated Au NPs, Ag NSs, or Ag NDs in the HTL exhibited PCEs ranging from 3.15% to 3.37%. Furthermore, OSCs with an Al grating substrate were developed by the incorporation of the Ag ND series into the PEDOT:PSS layer. Compared with that of a reference device, the PCEs of the devices increased to 3.32%–3.59% (11%–20% improvement), indicating that the light absorption enhancement at the active layer corresponds to the grating-coupled surface plasmon resonance and localized surface plasmon resonance excitations with strong near-field distributions penetrating into the active layer leading to higher efficiencies and subsequent better current generation.
grating-coupled surface plasmon resonance localized surface plasmon resonance Ag nanodisks organic solar cells imprinted grating 
Opto-Electronic Advances
2019, 2(7): 07190010
作者单位
摘要
1 南京邮电大学 有机电子与信息显示国家重点实验室培育基地和信息材料与纳米技术研究院, 先进生物与化学制造协同创新分中心, 江苏 南京 210023
2 吉林大学 超分子结构与材料教育部重点实验室, 吉林 长春 130012
3 南京工业大学 柔性电子重点实验室和先进材料研究院, 先进生物与化学制造协同创新中心, 江苏 南京 211816
制备了以ZnPc(OC8H17OPyCH3I)8为阴极缓冲层、P3HT∶PCBM为有源层的有机太阳能电池。 对阴极缓冲层ZnPc(OC8H17OPyCH3I)8薄膜分别进行了溶剂蒸汽退火和过渡舱惰性气体流退火处理, 并利用原子力显微镜(AFM)对缓冲层表面形貌进行了表征。结果表明: 这两种退火方法都使缓冲层形貌得以改善。电池效率从2.14%提高到3.76%, 电流密度从8.12 mA/cm2提高到10.71 mA/cm2, 填充因子从0.45提高到0.61。与传统器件相比, 退火处理的阴极缓冲层器件的稳定性也得到了改善, 器件寿命延长了1.4倍。这种简单阴极界面处理方法为改善聚合物太阳能电池性能提供了有效途径。
倒置结构有机太阳能电池 阴极缓冲层 退火处理 inverted organic solar cells cathode buffer layer ZnPc(OC8H17OPyCH3I)8 ZnPc(OC8H17OPyCH3I)8 annealing treatment 
发光学报
2017, 38(10): 1346
作者单位
摘要
重庆邮电大学 光电工程学院, 重庆 400065
以透明导电薄膜MoO3/Au/MoO3代替铟锡氧化物(ITO)作为有机太阳能电池(OSCs)的阳极, 研究了一系列结构为MoO3/Au/MoO3的透明电极和MoO3(y nm)/Au(x nm)/MoO3(y nm)/CuPc(25 nm)/C60(40 nm)/BCP(8 nm)/Al(100 nm)的有机太阳能电池。研究表明, MoO3/Au/MoO3电极的光电特性可通过改变各层薄膜厚度加以调控, 在MoO3薄膜厚度为40 nm、Au薄膜厚度为10 nm时性能最优, 且以该薄膜为电极的有机太阳能电池器件的性能接近于电极为ITO的有机太阳能电池器件。
透明电极 有机太阳电池 光电性能 transparent electrode organic solar cells photoelectric performance 
发光学报
2017, 38(10): 1332
作者单位
摘要
暨南大学物理学系 广州市真空薄膜技术与新能源材料重点实验室, 思源实验室, 广东 广州 510632
为了提高有机太阳能电池(OSCs)的性能, 增强器件在空气中的稳定性, 研究了TiO2薄膜作为阴极缓冲层对OSCs器件性能的影响。制备了结构为ITO/TiO2/C70/Rubrene/MoO3/Al的OSCs器件。首先, 通过测量器件效率, 考察了TiO2薄膜对Rubrene/C70电池的性能影响。接着, 通过控制TiO2薄膜厚度, 研究了TiO2厚度对器件性能的影响。实验结果显示, 当TiO2修饰层厚度比较薄时, 器件的各性能参数较低, 随着TiO2厚度的不断增加, 器件的各性能参数呈上升趋势; 当TiO2厚度为81 nm时, 器件的各性能参数达到最佳, 器件的功率转换效率为1.09%, 电流密度为2.55 mA·cm-2, 开路电压为0.88 V, 填充因子为48.69%; 当TiO2厚度继续增加时, 器件的各性能参数开始下降。对比没有TiO2阴极修饰层的器件, 最优时的Jsc、Voc、FF和PCE分别提高了37%、21%、17%和91%, 并阐述了性能提高的原因。
有机太阳能电池(0SCs) 阴极修饰层 organic solar cells(OSCs) TiO2 TiO2 cathode buffer layer Rubrene Rubrene C70 C70 
发光学报
2017, 38(3): 359

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!