作者单位
摘要
北方工业大学机械与材料工程学院,北京 100144
提出了一种基于等效元件和相位补偿法的高精度任意波片相位延迟量和方位角同时测量的方法。在测量光路中的待测波片之前插入一个可旋转半波片,利用反射镜使测量光两次过该半波片和待测波片,相当于测量一个相位延迟量为待测波片两倍的等效波片,可以实现双倍分辨率检测。采用双频激光源和相位检测方式,旋转半波片补偿测量光相位,将测量光相对参考光的相位差变化先后调整为最大值和最小值,由二者之差即可得到任意待测波片的相位延迟量,同时根据最大值或最小值对应的半波片方位角即可确定待测波片的方位角。本方法所测量的波片相位延迟量从原理上避免了一般光强法所受到的光强波动的影响,以及许多方法所受到的双折射器件方位角定位精度的影响。系统采用双频外差干涉光路,具有共光路性质,稳定性高。测量系统结构简单、元件少,测量快捷。此外,由于测量光束两次通过待测波片的同一位置,因此所提方法还可以用于测量楔形结构的双折射器件。现有条件下的误差分析表明,相位延迟量的测量不确定度约为3.3',快轴方位角的测量不确定度优于5.4''。实验对比结果表明所提方法与其他方法测量结果的一致性很好。
测量 波片测量 相位延迟量 等效元件 相位补偿 双倍分辨率 外差干涉 
中国激光
2024, 51(8): 0804004
作者单位
摘要
武汉理工大学 理学院 物理系, 武汉 430070
为了设计制造新型的位相延迟器, 利用1维光子晶体的特性, 在折射率为1.52的玻璃上, 镀制了由硫化锌(ZnS)与冰晶石(Na3AlF6)构成的多周期二次元一维光子晶体,进行了数值模拟计算及理论分析。结果表明, 在带隙范围内, 1维光子晶体的等效折射率是虚等效折射率;在斜入射时, 带隙内的p光和s光的反射光各自位相增加, 出现位相延迟, 其偏振态发生改变, 由线偏振光变为椭圆(圆)偏振光;在发生全反射时, 光疏媒质的等效折射率是虚等效折射率;反射光出现位相增加, 产生位相延迟, 其偏振态发生改变, 由线偏振光变为椭圆(圆)偏振光。该延迟器可以改变光的传播方向, 改变偏振态的位相, 克服了薄膜λ/4波片的缺陷。
物理光学 位相延迟器 全反射 虚折射率 光子晶体 带隙 physical optics phase retardation total reflection imaginary refractive index photonic crystal band gap 
激光技术
2023, 47(5): 686
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室,上海 201800
2 中国科学院大学材料科学与光电工程中心,北京 100049
3 白俄罗斯共和国开放式股份公司“精密电子机械制造设计局-光学机械设备”,白俄罗斯明斯克 220033
石英晶体是一种重要的双折射材料,广泛应用于光学相关领域。石英晶体在宽光谱下的参数测量通常使用椭圆偏振法,但现有的椭偏测量仪器往往假定晶体的光轴与测量光路对准,从而引入测量误差,这一问题在紫外波段尤为显著。为此提出了一种采用椭圆偏振法精确测量石英晶体参数的穆勒矩阵模型,运用坐标变换和Berreman 4×4矩阵理论建立石英晶体参数与穆勒矩阵的关联,通过拟合计算可以得到晶体的厚度、光轴欧拉角和相位延迟量。实验结果显示,拟合得到的穆勒矩阵与测量结果高度一致,模型拟合的均方根误差<5,拟合厚度的相对误差<1%,拟合的欧拉角与测量结果吻合。该模型包含的信息丰富,拟合准确,对椭圆偏振法测量各向异性材料的精确参数具有重要参考价值。
测量 椭偏技术 石英晶体 介电张量 相位延迟量 欧拉角 
中国激光
2023, 50(14): 1404006
作者单位
摘要
1 北方工业大学机械与材料工程学院,北京 100144
2 北京理工大学机械与车辆学院,北京 100081
波片精度对偏振光学系统性能有着重要的影响,故需要对其相位延迟量和快轴方位角进行高精度测量。提出了一种新型基于双频激光干涉相位检测的高精度波片测量方法,采用双频激光外差干涉光路,利用一个可旋转半波片和一个角锥反射棱镜测量待测波片,可实现任意波片的相位延迟量和快轴方位角的高精度同时测量。所提方法不受波片、偏振片等双折射器件的方位角精度的影响,从原理上避免了该类系统误差。所设计的系统具有共光路结构,测量稳定性高,信号处理采用相位检测方式相对于一般的光强检测方式测量精度更高。此外,所设计的测量系统中元件很少,结构简单,测量过程快捷。误差分析表明,在现有实验条件下,测量系统的波片相位延迟量的测量不确定度约为3.9',快轴方位角的测量不确定度约为5''。实验比对结果表明,所提方法的测量结果与其他方法测量结果的一致性很好。重复性测量实验表明,测量结果的标准偏差约为2'。
测量 波片测量 相位延迟量 快轴方位角 双频激光干涉 相位检测 
光学学报
2023, 43(1): 0112002
张敏娟 1,2,*李春阳 1,2李晋华 1,2杨坤 1,2
作者单位
摘要
1 中北大学信息与通信工程学院,山西 太原 030051
2 中北大学山西省光电信息与仪器工程技术研究中心,山西 太原 030051
相位延迟量是偏振光学元件的一个重要指标,为了精准快速地测量偏振元件的相位延迟量,提出一种具有相位补偿的级联调制的偏振元件相位延迟量检测方法。该方法采用弹光调制器(PEM)和电光调制器(EOM)作为相位延迟量检测系统的级联调制元件,利用Soleil-Barbinet相位补偿器对样品进行光学补偿。基于数字锁相技术与现场可编程逻辑门阵列(FPGA)的片上可编程系统,检测光强极值点对应的Soleil-Barbinet相位补偿器的相位参数并进行数据处理,实现样品的相位延迟量检测。实验表明,利用该方法测量样品的相位延迟量的最大相对误差为0.857%,测量精度为99.143%,验证了将偏振调制法和补偿法相结合测量相位延迟量具有较高的精度,且降低了补偿器本身对测量误差的影响。
仪器,测量与计量 相位延迟量 弹光调制 电光调制 数字锁相技术 Soleil-Barbinet相位补偿器 
激光与光电子学进展
2023, 60(1): 0112001
作者单位
摘要
1 山东交通学院理学院, 山东 济南 250357
2 曲阜师范大学物理工程学院 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273100
基于偏光干涉理论, 提出一种宽光谱范围内测量波片相位延迟量和厚度的方法。利用矩阵光学方法分析了光谱透射率曲线与中值透射率直线交点波长之间的关系, 给出待测波片的相位延迟量、波片厚度等多个物理量的计算公式并进行了误差分析。误差分析表明本方法相位延迟量测量最大误差为3.38°, 厚度测量最大误差为0.66μm。实验上利用分光光度计验证了本方法的有效性。本方法能够实现波片多物理量的同时测量, 且调节过程对于起偏器、检偏器透光轴方向及待测波片快轴方向无严苛要求, 测量过程对波片也无损伤和污染, 在波片加工、使用前质量评估等方面都具有一定的应用价值。
相位延迟量 透射率 波片 偏光干涉 phase retardation transmission wave plate polarization interference 
光学技术
2022, 48(5): 572
作者单位
摘要
曲阜师范大学物理工程学院山东省激光偏光与信息技术重点实验室,山东 曲阜 273165
针对波片常规设计中存在的零级波片厚度过小而不易制作、多级片的相位延迟量受温度影响较大的现状,给出了一种设计厚单元零级波片的思路与方法。根据单轴双折射晶体的光学性质,给出了厚单元零级波片设计的原理公式,据此使用任意单轴双折射晶体设计出可选择厚度的零级波片。分析了波片的厚度精度和温度变化对厚单元零级波片相位延迟量的影响,并与常规设计波片进行了比较。分析结果表明:1 μm的厚度偏差对厚单元零级波片相位延迟量的影响小于0.3°,仅为相同厚度偏差下常规设计零级波片和多级波片的近6%;温度的变化对厚单元零级波片相位延迟量的影响与其对常规设计零级波片的影响相近,而温度的变化对厚单元零级波片相位延迟量的影响仅为相同厚度常规设计多级片的近1/30。针对三个波长波片设计制作了实验样品并进行了实验测试,验证了厚单元零级波片设计和制作的可行性。所设计的厚单元零级波片具有综合相位延迟性能和厚度可以灵活设计的特点,且便于制作,较常规设计波片具有明显的优势。
激光光学 偏振光学 零级波片 相位延迟量精度 温度效应 
中国激光
2022, 49(23): 2301010
唐凡春 1,2步扬 1,2,*吴芳 1,2王向朝 1
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室,上海 201800;
2 中国科学院大学,北京 100049
提出了一种利用径向偏振光同时测量波片相位延迟量和快轴方位角的方法。水平线偏振光通过涡旋半波片后生成径向偏振光,然后用径向偏振光照射被测波片。由于径向偏振光具有空间非均匀分布的偏振特性,对单次检偏后采集的光强分布依次进行Radon变换和最小二乘拟合,可得到强度调制曲线。最后对强度调制曲线进行傅里叶分析,就可计算得到被测波片的相位延迟量和快轴方位角。实验结果表明,当波片的快轴与水平方向的夹角为45°时,消色差1/4波片和808 nm零级1/4波片的相位延迟量和快轴方位角的测量标准差小于0.03°。该方法测量装置简单,测量过程无需转动器件,测量快速方便且测量精度高。
测量 相位延迟量 快轴方位角 径向偏振光 波片 
中国激光
2022, 49(17): 1704006
黄威 1,2,3侯俊峰 1,2,3,*林佳本 1,2,3张洋 1,2,3[ ... ]王海峰 4
作者单位
摘要
1 中国科学院国家天文台,北京 100101
2 中国科学院太阳活动重点实验室,北京 100101
3 中国科学院大学,北京 100049
4 中国工程物理研究院流体物理研究所,四川 绵阳 621999
向列相液晶可变相位延迟器(LCVR)已逐渐成为空间偏振调制仪器的研究热点,然而,国内没有液晶器件在空间使用的经验,液晶器件在各种空间环境下的适应性如何尚未可知。因此,本团队设计了一套星载向列相液晶相位延迟测试系统,该系统不仅可以在地面的空间力、热模拟环境中测试LCVR的关键性能,还可以搭载在卫星上对LCVR的相位延迟稳定性进行在轨验证。本文首先阐述了LCVR相位延迟的测量方法并实现了光机电系统的优化设计,在此基础上,研究了LCVR在空间力、热模拟环境中的电光性能。研究结果表明:力学试验前后,LCVR的电光性能未发生明显变化;在热试验中,LCVR的相位延迟-电压曲线的稳定性在0.185°以内。本次试验发现LCVR的相位延迟-电压曲线随环境温度呈线性变化,该结果为未来星上数据校准提供了数据支持。最后,在长达9个月的不间断运行测试中,LCVR的相位延迟-电压曲线长周期变化小于1°,标准偏差为0.27°。这表明该液晶试验仪长周期工作性能良好,可以满足在轨测试需求。
测量 向列相液晶 偏振调制 相位延迟 液晶电驱动 
中国激光
2022, 49(17): 1704005
作者单位
摘要
山东大学 空间科学研究院 山东省光学天文与日地空间环境重点实验室, 山东 威海264209
将光学波片放入激光谐振腔可使振荡模式发生分裂, 测量分裂模的频率差能准确测得波片的相位延迟。基于这一原理, 设计了光路沿竖直方向的相位延迟测量仪, 可根据频率差不同引起振荡模式的变化采用相应测量方法。对半外腔激光器、光强和频差探测单元、控制程序等部分进行了设计说明。为了实现自动化和高精度测量, 系统选定两正交偏振模的等光强点作为工作点, 并补偿初始相位延迟和波片倾斜误差。测试表明, 仪器能够对任意相位延迟的波片自动判定并测量, 对多级波片多次测量的标准差约0.01°, 总的测量不确定度为0.03°(优于λ/10 000), 且只需要测量激光频率差, 具有可溯源性。
相位延迟 波片测量 频率分裂 正交偏振 氦氖激光器 phase retardation wave plate measuring frequency splitting orthogonal polarization helium-neon laser 
红外与激光工程
2019, 48(7): 0718001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!