作者单位
摘要
中国人民解放军军事科学院军事医学研究院微生物流行病研究所,北京 100071
基于表面增强拉曼散射(SERS)的免疫层析检测技术是一种前沿研究技术,主要利用纳米材料制得的SERS标志材料取代传统的胶体金,综合了SERS高通量、高灵敏度和免疫层析简便、快速的双重优势,满足了定量检测的需求。其中,高性能纳米材料是SERS免疫层析技术实现高灵敏度检测的关键,研究人员通过设计和优化纳米材料的粒径、形态、结构等制备出具有强SERS增强性能的SERS基底,以提高检测灵敏度。本文首先介绍了SERS免疫层析技术的基本原理;然后,综述了用于SERS免疫层析技术的几种SERS基底以及SERS免疫层析技术在不同检测物质中的应用;最后,讨论并展望了SERS免疫层析技术未来发展趋势。
表面增强拉曼散射 免疫层析 现场快速检测 多重检测 
光学学报
2023, 43(17): 1712003
Author Affiliations
Abstract
Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
The Microchip Imaging Cytometer (MIC) is a class of integrated point-of-care detection systems based on the combination of optical microscopy and flow cytometry. MIC devices have the attributes of portability, cost-effectiveness, and adaptability while providing quantitative measurements to meet the needs of laboratory testing in a variety of healthcare settings. Based on the use of microfluidic chips, MIC requires less sample and can complete sample preparation automatically. Therefore, they can provide quantitative testing results simply using a finger prick specimen. The decreased reagent consumption and reduced form factor also help improve the accessibility and affordability of healthcare services in remote and resource-limited settings. In this article, we review recent developments of the Microchip Imaging Cytometer from the following aspects: clinical applications, microfluidic chip integration, imaging optics, and image acquisition. Following, we provide an outlook of the field and remark on promising technologies that may enable significant progress in the near future.The Microchip Imaging Cytometer (MIC) is a class of integrated point-of-care detection systems based on the combination of optical microscopy and flow cytometry. MIC devices have the attributes of portability, cost-effectiveness, and adaptability while providing quantitative measurements to meet the needs of laboratory testing in a variety of healthcare settings. Based on the use of microfluidic chips, MIC requires less sample and can complete sample preparation automatically. Therefore, they can provide quantitative testing results simply using a finger prick specimen. The decreased reagent consumption and reduced form factor also help improve the accessibility and affordability of healthcare services in remote and resource-limited settings. In this article, we review recent developments of the Microchip Imaging Cytometer from the following aspects: clinical applications, microfluidic chip integration, imaging optics, and image acquisition. Following, we provide an outlook of the field and remark on promising technologies that may enable significant progress in the near future.
microchip microfluidics flow cytometer imaging cytometer biosensors point-of-care testing biomedical engineering 
Opto-Electronic Advances
2022, 5(11): 210130
Author Affiliations
Abstract
MOE Key Laboratory of Laser Life Science, & Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou 510631, P. R. China
This work demonstrates a smartphone-based automated fluorescence analysis system (SAFAS) for point-of-care testing (POCT) of Hg(II). This system consists of three modules. The smartphone module is used to provide an excitation light source, and to collect and analyze fluorescent images. The dark box module is applied to integrate the desired optical elements and offers a dark environment. The cost of the integrated dark box mainly includes the upper cover, box body, lower bottom, fixture and some optical elements which is about $109. The chip module is used for fluorescence sensing, which is composed of an upper plate, bottom plate and cloth-based chip. Due to the integration of multiple smartphone functions, the SAFAS eliminates the need for additional power sources, light sources and analysis systems. The dark box and upper and bottom plates are made by 3D printer. The cloth-based chip (about $0.005 for each chip) is fabricated using the wax screen-printing technique, with no need for expensive and complex fabrication equipments. To our knowledge, the cloth-based microfluidic fluorescence detection method combined with smartphone functions is first reported. By using optimal conditions, the designed system can realize the quantitative detection of Hg(II), which has a linear range of 0.001–100μgmL?1 and a detection limit of 0.5ngmL?1. Additionally, the SAFAS has been successfully applied for detecting Hg(II) in actual water samples, with recoveries of 100.1%–111%, RSDs of 3.88%–9.74%, and fast detection time of about 1 min. Obviously, the proposed SAFAS has the advantages of high sensitivity, wide dynamic range, acceptable reproducibility, good stability and low cost. Therefore, it is believed that the presented SAFAS has great potential to perform the POCT of Hg(II) in different water samples.This work demonstrates a smartphone-based automated fluorescence analysis system (SAFAS) for point-of-care testing (POCT) of Hg(II). This system consists of three modules. The smartphone module is used to provide an excitation light source, and to collect and analyze fluorescent images. The dark box module is applied to integrate the desired optical elements and offers a dark environment. The cost of the integrated dark box mainly includes the upper cover, box body, lower bottom, fixture and some optical elements which is about $109. The chip module is used for fluorescence sensing, which is composed of an upper plate, bottom plate and cloth-based chip. Due to the integration of multiple smartphone functions, the SAFAS eliminates the need for additional power sources, light sources and analysis systems. The dark box and upper and bottom plates are made by 3D printer. The cloth-based chip (about $0.005 for each chip) is fabricated using the wax screen-printing technique, with no need for expensive and complex fabrication equipments. To our knowledge, the cloth-based microfluidic fluorescence detection method combined with smartphone functions is first reported. By using optimal conditions, the designed system can realize the quantitative detection of Hg(II), which has a linear range of 0.001–100μgmL?1 and a detection limit of 0.5ngmL?1. Additionally, the SAFAS has been successfully applied for detecting Hg(II) in actual water samples, with recoveries of 100.1%–111%, RSDs of 3.88%–9.74%, and fast detection time of about 1 min. Obviously, the proposed SAFAS has the advantages of high sensitivity, wide dynamic range, acceptable reproducibility, good stability and low cost. Therefore, it is believed that the presented SAFAS has great potential to perform the POCT of Hg(II) in different water samples.
Smartphone automated fluorescence detection cloth-based chip point-of-care testing Hg(II) 
Journal of Innovative Optical Health Sciences
2022, 15(5): 2250028
作者单位
摘要
南京理工大学 电子工程与光电技术学院,江苏 南京 210094
计算光学显微成像技术将光学编码和计算解码相结合,通过光学操作和图像算法重建来恢复微观物体的多维信息,为显微成像技术突破传统成像能力提供了强大的助力。这项技术的发展得益于现代光学系统、图像传感器以及高性能数据处理设备的优化,同时也被先进的通信技术和设备的发展所赋能。智能手机平台作为高度集成化的电子设备,具有先进的图像传感器和高性能的处理器,可以采集光学系统的图像并运行图像处理算法,为计算光学显微成像技术的实现创造了全新的方式。进一步地,作为可移动通信终端,智能手机平台开放的操作系统和多样的无线网络接入方法,赋予了显微镜灵活智能化操控能力与丰富的显示和处理分析功能,可用于实现各种复杂环境下多样化的生物学检测应用。文中从四个方面综述了基于智能手机平台的计算光学显微成像技术,首先综述了智能手机平台作为光学成像器件的新型显微成像光路设计,接下来介绍了基于智能手机平台先进传感器的计算光学高通量显微成像技术,然后介绍了智能手机平台的数据处理能力和互联能力在计算显微成像中的应用,最后讨论了这项技术现存在的一些问题及解决方向。
智能手机平台 计算光学显微成像 无线传输 即时检验 smartphone platform computational optical microscopy imaging wireless transmission point-of-care testing 
红外与激光工程
2022, 51(2): 20220095
李聪慧 1,2曹若凡 1,2,*许夏瑜 1,2李菲 2,3[ ... ]徐峰 1,2
作者单位
摘要
1 西安交通大学生命科学与技术学院生物信息工程教育部重点实验室, 陕西 西安 710049
2 西安交通大学仿生工程与生物力学中心, 陕西 西安 710049
3 西安交通大学理学院化学系, 陕西 西安 710049
疾病诊断、食品安全监测和环境污染检测等领域常涉及细菌等微生物的即时检测,光学显微镜是常用于检测和分析这些微小样品的工具。无透镜显微成像技术是将样品与电荷耦合元件(CCD)或互补金属半导体氧化物(CMOS)芯片等光检测器紧密接触、无需光学元件、直接对样品进行成像的技术,较传统显微装置具有结构简单、体积小巧、操作简便、价格低廉等优点,已被应用于微小组织结构检查、细胞形态数量分析、微生物检测等领域。根据成像原理,无透镜显微成像技术可分为阴影成像、荧光成像及数字全息成像三类。分别阐述了三种无透镜显微成像技术的成像原理和物理结构,并综述了无透镜显微成像技术在即时检测中的应用,最后展望了无透镜显微成像技术的发展。
生物光学 显微成像 阴影成像 荧光成像 全息成像 即时检测 
中国激光
2018, 45(2): 0207018
作者单位
摘要
大连理工大学 辽宁省微纳米及系统重点实验室, 辽宁 大连 116023
针对芯片即时检测(POCT)芯片对键合精度、键合强度、生产效率和生物兼容性的要求, 基于超声波键合技术设计了结构化的导能筋布置形式和阻熔导能接头结构。研究了超声波键合时间和键合压力对微通道高度保持性能的影响, 确定了精密超声波键合工艺参数。利用高精度显微镜、拉伸试验机和羊全血分别对键合后芯片的微通道高度、键合强度、微通道密闭性以及液体自驱动性能进行了测试。结果表明: 所设计的导能筋布置形式合理可靠; 利于芯片各功能的集成, 阻熔导能接头结构能够较精确地控制键合后微通道的高度, 键合精度达到2 μm; 全血驱动时间的极差在20 s以内; 所确定的键合工艺参数能够实现高强度的键合, 键合强度不小于2.5 MPa。该熔接结构及工艺参数具有键合精度高、键合强度高、生物兼容性好和熔接均匀等优点, 可应用于医用POCT芯片产品中。
即时检测芯片 超声波键合 熔接结构 通道高度 工艺参数 Point-Of-Care Testing(POCT) chip ultrasonic bonding joint structure microchannel height processing parameter 
光学 精密工程
2016, 24(5): 1057

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!