作者单位
摘要
南京理工大学 电子工程与光电技术学院,江苏 南京 210094
计算光学显微成像技术将光学编码和计算解码相结合,通过光学操作和图像算法重建来恢复微观物体的多维信息,为显微成像技术突破传统成像能力提供了强大的助力。这项技术的发展得益于现代光学系统、图像传感器以及高性能数据处理设备的优化,同时也被先进的通信技术和设备的发展所赋能。智能手机平台作为高度集成化的电子设备,具有先进的图像传感器和高性能的处理器,可以采集光学系统的图像并运行图像处理算法,为计算光学显微成像技术的实现创造了全新的方式。进一步地,作为可移动通信终端,智能手机平台开放的操作系统和多样的无线网络接入方法,赋予了显微镜灵活智能化操控能力与丰富的显示和处理分析功能,可用于实现各种复杂环境下多样化的生物学检测应用。文中从四个方面综述了基于智能手机平台的计算光学显微成像技术,首先综述了智能手机平台作为光学成像器件的新型显微成像光路设计,接下来介绍了基于智能手机平台先进传感器的计算光学高通量显微成像技术,然后介绍了智能手机平台的数据处理能力和互联能力在计算显微成像中的应用,最后讨论了这项技术现存在的一些问题及解决方向。
智能手机平台 计算光学显微成像 无线传输 即时检验 smartphone platform computational optical microscopy imaging wireless transmission point-of-care testing 
红外与激光工程
2022, 51(2): 20220095
叶燃 1,2徐楚 1汤芬 1尚晴晴 1[ ... ]左超 2,*
作者单位
摘要
1 南京师范大学 计算机与电子信息学院,江苏 南京 210023
2 南京理工大学 电子工程与光电技术学院,江苏 南京 210094
微球超分辨显微成像技术能够突破衍射极限并成倍提高传统光学显微镜的成像分辨率。因其具有成像系统简单,可实时成像,无需荧光染料标记,能在白光照明条件下工作,且可与市场上成熟的显微镜产品相兼容等优点,具有重要研究价值与广阔应用前景,发展潜力巨大。该技术发展至今已取得了众多令人瞩目的研究成果,但现阶段的研究主要集中在微球超分辨成像规律、成像质量的提高、微球的操控方法上。而针对微球透镜的超分辨成像机理与模型,目前尚未形成完善统一的认知与可靠一致的解释。在此背景下,文中梳理归纳了微球透镜近场聚焦及远场成像机理、数学模型、仿真技术等方面的研究工作,分析现有工作的意义与所存在的不足,指出该领域需要着重解决的问题,并对微球成像技术未来的发展方向给予展望。
超分辨成像 光学传递函数 微球 光子纳米射流 成像仿真 super-resolution imaging optical transfer function microsphere photonic nanojet imaging simulation 
红外与激光工程
2022, 51(2): 20220086
作者单位
摘要
南京理工大学 电子工程与光电技术学院, 江苏 南京 210094
差分相衬(Differential phase contrast, DPC)成像是一种基于部分相干照明调控的无标记非干涉相位成像方法, 它为未染色透明样品提供了一种快速、有效且高分辨率的可视化手段。DPC通过多次非对称照明调控或非对称孔径调制使不可见的样品相位信息转换为成像器件可直接探测的强度信号, 从而为定性相衬成像甚至定量相位重建提供了可能。近年来, 随着该领域研究的逐步深入, 成像的相位传递函数得以明确推导, DPC已经逐步从定性观察走向了定量研究。另一方面, 得益于全孔径照明调控和高效相位反卷积算法, DPC定量相位成像的空间分辨率可达到非相干衍射极限, 并能够获得低噪声、高精度的定量相位重构结果。通过与三维光学传递函数理论交融借鉴, DPC最近已被进一步拓展到了三维衍射层析领域, 实现了厚样品三维折射率的定量成像。文中从DPC成像方法的基本原理、成像系统与算法优化等几个方面对其历史发展、研究现状和最新进展进行了详细综述, 并讨论了该方法现存的一些关键问题以及今后可能的研究方向。
定量相位成像 差分相衬 相位传递函数 衍射层析 quantitative phase imaging differential phase contrast phase transfer function diffraction tomography 
红外与激光工程
2019, 48(6): 0603014
林飞 1,2,*张闻文 2范瑶 1,2左超 1,2陈钱 2
作者单位
摘要
1 南京理工大学电子工程与光电技术学院智能计算成像实验室, 江苏 南京 210094
2 南京理工大学电子工程与光电技术学院江苏省光谱成像与智能感知重点实验室, 江苏 南京 210094
莱茵伯格照明是显微成像中光学染色的一种方式,照明光源通过特殊的滤色片使样品与背景产生色差,有效提高无色透明样品的对比度。基于可编程液晶显示器(LCD)的莱茵伯格照明显微系统将传统显微镜中聚光镜光阑替换成低成本的薄膜晶体管液晶显示器只需改变其照明图案,就能够实现明场、暗场、相位差、倾斜成像以及莱茵伯格照明等多种显微成像功能。并且由于LCD面板的颜色与光强灵活可调,系统可以衍生出彩虹暗场、彩虹相差等全新的光学染色方法。采用该系统对未染色的肺癌细胞、纺织纤维、小鼠肾脏切片等无色透明样品进行显微观察,验证了系统的多样性与可靠性。
显微 莱茵伯格照明 可编程液晶显示器 光学系统 
光学学报
2016, 36(8): 0818002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!