作者单位
摘要
1 河北工业大学, 天津 300400
2 中国科学院国家天文台, 北京 100012
天文学上把亮度随时间变化的恒星称为变星。 它对于研究星系的距离, 恒星的演化以及恒星在不同阶段的性质具有非常重要的意义。 目前对变星的识别主要依靠长时间观测其亮度变化, 并结合对恒星的光谱进行分析才能最终完成认证。 这项工作需要天文学家投入大量时间, 难以开展大规模分类。 针对上述问题本文提出了一种将测光图像与一维光谱进行数据融合用于对变星进行分类的方法——光谱-测光融合网络(ASPF-Net)。 该网络由C1网络和C2网络两部分组成, 其中C1是用于提取光谱特征的一维卷积神经网络, C2是用于提取测光数据特征的二维卷积神经网络; 最后将两者提取到的特征进行融合, 用一个全连接前馈神经网络完成分类。 该研究在对食变星、 脉冲变星和标准星分类问题上进行了实验。 实验数据均来自于斯隆数字巡天项目(SDSS), 该项目包含了测光图像和光谱两种数据。 对于光谱数据本文选取波长在380.0 ~680.0 nm范围内的流量值。 测光图像由: u、 g、 r、 i和z共5个波段数据组成, 对应的中心波长分别为: 355.1、 468.6、 616.6、 748.0和893.2 nm。 相比于传统的利用其中三个波段合成RGB图像, 原始SDSS数据拥有更高的灰度等级。 为了方便网络训练, 对测光数据和光谱数据均做了标准化处理。 分类性能分析方面, 使用了精确率, 召回率, F1值和平均准确率四个指标进行评估。 提出的光谱-测光融合网络(ASPF-Net)在针对食双星、 脉冲变星和标准星的分类任务, 精确率分别为: 91.1%、 92.8%和98.2%。 实验证明, 数据融合之后的分类性能优于单独使用光谱数据或测光数据的分类性能。 说明将光谱数据和测光数据结合起来对变星进行分类是一种有效的方法, 这为今后的变星的分类提供了一种新的思路和方法。
数据融合 光谱分类 多模态融合网络 测光图像 变星分类 Data fusion Spectral classification Feature fusion network Photometry image Variable star classification 
光谱学与光谱分析
2023, 43(6): 1869
作者单位
摘要
辽宁科技大学理学院, 辽宁 鞍山 114051
恒星光谱分类是恒星光谱分析的重要工作之一。 我国大型巡天项目LAMOST能够获得海量的恒星光谱数据, 为了对海量恒星光谱数据进行高效分类, 特别是对恒星光谱子型数据进行分类, 需要研究快速有效的恒星光谱自动分类算法。 提出一种基于Transformer特征提取的混合深度学习算法Bert+svm(简记为Besvm)实现A型恒星光谱子型的自动分类。 该算法将A型恒星光谱26个线指数作为输入特征, 应用Bert模型对26个线指数进行更深层次的学习, 通过学习26个线指数的内在关联, 进而提取到更有利于A型恒星光谱子型分类的特征。 提取好的新特征被输入到分类器算法支持向量机(简记为SVM)中, 进而对A型恒星光谱的三个子型A1、 A2和A3进行自动分类。 此前, SVM算法在恒星光谱分类任务中已经有过应用, 一些衍生的SVM算法在恒星光谱分类任务中也有较高的分类正确率。 相比从前应用到恒星光谱分类任务的SVM算法, 我们的混合深度学习算法受数据的信噪比影响较小, 使用低信噪比数据也能有较高的分类正确率, 并且所用数据量较少。 通过五组实验验证了该算法的有效性和优越性: 实验1用来对比选择优秀的核函数, 通过光谱数据的匹配实验, 最终选择了径向基核函数RBF; 实验2对比了Besvm算法和其他四种传统优秀算法的性能指标, 验证了Besvm算法的优越性; 实验3用来检验Besvm算法的稳定性; 实验4分析了数据量对Besvm算法的影响; 实验5分析了不同信噪比数据对Besvm算法分类正确率的影响。 综合实验结果分析表明, 提出的混合深度学习算法Besvm在规模较小且信噪比低的数据集上仍能保持较高的分类正确率。 Besvm总体分类错误率在0.01以下, 远低于经典传统机器学习算法LDA算法, BP神经网络算法, SVM算法和Xgboost算法的分类错误率0.7, 0.66, 0.65, 0.36.需要说明的是BP神经网络算法的分类正确率过于受限于隐层神经元的个数。
光谱分类 线指数 Transformer Transformer Bert Bert SVM SVM Spectral classification Line index LAMOST LAMOST 
光谱学与光谱分析
2023, 43(5): 1575
作者单位
摘要
1 河北工业大学, 天津 300400
2 中国科学院国家天文台, 北京 100012
天体光谱处理中的一项基本任务是对大量的恒星光谱进行自动分类。 到目前为止, 恒星光谱的分类工作多是基于一维光谱数据。 该研究打破传统的天体光谱数据处理流程, 提出了基于二维恒星光谱分类的方法。 在LAMOST(the large sky area multi-object fiber spectroscopic telescope)的数据处理流程中, 所有的一维光谱都是由二维光谱抽谱、 合并得来。 二维光谱是由光谱仪产生的图像, 包括蓝端图像和红端图像。 基于LAMOST二维光谱数据, 提出了特征融合卷积神经网络(FFCNN)分类模型, 用于二维恒星光谱的分类。 该模型是一个有监督的算法, 通过两个CNN模型分别提取蓝端图像和红端图像的特征, 然后将二者进行融合得到新的特征, 再利用CNN对新特征进行分类。 所使用的数据全部来源于LAMOST, 我们在LMOST DR7中随机选择了一批源, 然后获得了它们的二维光谱。 一共有14 840根F, G和K型恒星的二维光谱用于FFCNN模型的训练, 其中包括7 420根蓝端光谱和7 420根红端光谱。 由于三类恒星光谱的数量并不均衡, 在训练的过程中分别为每类恒星光谱设置了不同权重, 防止模型出现分类失衡现象。 同时, 为了加快模型收敛, 对二维光谱数据采用Z-score归一化处理。 此外, 为了充分利用所有样本, 提高模型的可靠度, 采用五折交叉验证的方法验证模型。 3 710根二维光谱用作测试集, 使用准确率、 精确率、 召回率和F1-score来对FFCNN模型的性能进行评价。 实验结果显示, F, G和K型恒星的精确率分别达到87.6%, 79.2%和88.5%, 而且它们超过了一维光谱分类的结果。 实验结果证明基于FFCNN的二维恒星光谱分类是一种有效的方法, 它也为恒星光谱的处理提供了新的思路和方法。
二维恒星光谱 光谱分类 FFCNN模型 归一化 交叉验证 Two-dimensional stellar spectra Spectral classification FFCNN model Normalized Cross-validation 
光谱学与光谱分析
2022, 42(6): 1881
作者单位
摘要
北京邮电大学人工智能学院, 北京 100876
拉曼光谱检测方法依赖于化学计量学算法, 深度学习是当下最炙手可热的方向, 可应用于拉曼光谱进行建模。 但是深度学习需要大样本进行训练, 而拉曼光谱采集受制于器材和人力成本, 获取大批量的样本需要更大成本, 且易受荧光等因素干扰, 这些问题都制约了将深度学习应用于拉曼光谱。 针对以上问题, 通过引入深度卷积生成对抗网络(DCGAN)提取拉曼光谱内部特征, 对抗生成新的拉曼光谱, 从而达到扩充数据集目的。 同时和另一个扩充数据集的方法——偏移法进行对比, 证明DCGAN的可靠性。 设计生成光谱选取标准, 选取高相似性的光谱填充数据集, 为深度学习在拉曼光谱中的应用奠定基础。 为了验证生成的光谱比原始光谱有更好的适用性, 设计四组实验: (1)使用原始拉曼光谱输入到SVM进行分类, 得到51.92%的分类准确率; (2)使用原始拉曼光谱输入到CNN进行分类, 得到75.00%的分类准确率; (3)采用偏移法生成光谱, 输入到CNN里进行分类, 得到91.85%的分类准确率; (4)使用DCGAN生成光谱, 输入到CNN里进行分类, 得到98.52%分类准确率。 实验结果表明, DCGAN能在只有少量拉曼光谱的情况下, 通过对抗学习得到较好的生成光谱, 且生成的光谱相比原光谱更加清晰, 减少了可能的干扰因素, 具有光谱预处理效果。 通过DCGAN对抗生成大量高质量的数据填充到原有拉曼光谱数据集, 扩充数据集的样本量, 使得深度学习模型能够得到更好的训练, 从而提高模型的准确率。 该研究为深度学习方法应用于拉曼光谱分析技术提出了一个可行的方案。
拉曼光谱 数据扩充 光谱分类 深度卷积生成对抗网络 Raman spectrum Data augmentation Spectral classification Deep convolutional generative adversarial networks 
光谱学与光谱分析
2021, 41(2): 400
作者单位
摘要
岩石光谱综合反映了岩石的物理化学性质、 成分及其结构构造。 岩石光谱数据已被应用于岩石分类的研究, 但是不同于矿物光谱, 岩石光谱并无标准数据库, 且受较多干扰因素影响, 例如矿物组分、 结构构造、 化学成分、 风化力度, 测量仪器的误差等。 传统岩石光谱分类模型先是对岩石光谱进行预处理排除干扰, 然后采用不同方法对部分光谱特征分析, 以达到分类目的。 但对光谱数据特征遗失较多, 使得分类准确率低下且操作过程繁琐、 效率不高。 因此, 建立一个简单、 快速、 准确的岩石光谱自动分类模型具有重要意义。 机器学习能够对获得的所有数据进行学习, 不存在遗漏, 大大提高了分类精度, 且是对原始数据直接操作, 不需预处理, 简化流程。 为此, 选取辽宁兴城地区作为研究区, 采集了若干种典型岩石样本, 利用美国ASD便携式光谱仪实测光谱, 最终获得608条数据, 依据岩石光谱特征分为三类进行研究。 首先利用决策树(DT)及决策树的升级模型——随机森林(RF)对数据进行分类, 但当数据噪音较大时随机森林容易陷入过拟合; 因而利用对异常值不敏感的K-最近邻(KNN)建模, 但KNN需要对每个样本都考虑, 数据量大时计算量会很大, 效率不高; 所以通过支持向量机(SVM)来提升分类准确率。 从实验结果可以看出, 4种分类模型的准确率排序为: SVM>KNN>RF>DT。 为进一步提高岩石光谱特征的自动分类精度, 采取了融合多个不同模型的办法, 即对不同模型的分类结果进行投票, 选择投票最多的作为最后分类结果。 由于硬投票可在一定程度上减少过拟合现象的发生, 更加适合分类模型, 所以利用硬投票法融合了RF、 KNN与SVM三个机器学习模型, 最终的分类准确率可达到99.17%。 综上所述, 基于融合学习模型进行岩石光谱特征自动分类是切实可行且准确高效的。
岩石光谱分类 决策树 随机森林 K-最近邻 支持向量机 模型融合 Rock spectral classification Decision tree Random forest K-nearest neighbor Support vector machine Model fusion 
光谱学与光谱分析
2021, 41(1): 141
作者单位
摘要
山东大学机电与信息工程学院, 山东 威海 264209
随着天文学的发展以及天文望远镜观测能力的提升, 国内外许多大型巡天望远镜将产生PB级的恒星光谱数据。 恒星光谱是来自恒星的电磁辐射, 通常由连续谱与吸收线叠加而成, 其差异源于恒星的有效温度、 表面重力加速度以及元素的化学丰度等。 恒星光谱自动分类是天文数据处理的一项重要研究内容, 是研究恒星演化和参数测量的基础。 海量的恒星光谱对分类方法提出了高效、 准确的要求。 传统的人工分类方法存在速度慢、 精度低等缺点, 已经无法满足海量恒星光谱特别是低信噪比恒星光谱自动分类的实际需要, 机器学习算法目前已经被广泛地应用于恒星光谱分类。 恒星光谱的一个显著特征是数据维度较高, 降维不但可以实现特征提取, 而且可以降低计算量, 是光谱分类的首要任务。 传统的线性降维方法如主成分分析仅依据方差对光谱进行降维, 不同类型的光谱在投影到低维特征空间后会出现交叉现象, 而流形学习能够产生优良的分类边界, 很好地避开重叠, 有利于后续的分类。 针对光谱数据维度较高的特点, 研究了光谱数据在高维空间内的分布以及流形学习对高维线性数据降维的原理, 比较了t-SNE和主成分分析两种降维方法对光谱数据降维的效果, 并使用基于属性值相关距离的改进的K近邻算法进行光谱分类, 最终对实验结果进行了分析并使用多种机器学习分类器进行比较和验证。 采用Python语言及Scikit-learn第三方库实现了算法, 对SDSS的12 000条低信噪比的恒星光谱进行实验, 最终实现了光谱数据的高精度自动处理和分类。 实验结果表明, 对于光谱数据的降维处理, 基于流形学习的t-SNE方法能够在高维光谱数据中恢复低维流形结构, 即找出高维空间中的低维流形, 并解出与之对应的嵌入映射, 在降维过程中最大程度地保留不同类别光谱样本之间的差异从而产生明显的分类边界。 特征提取后, 使用机器学习分类器能够在测试数据集上达到满意的分类准确率。 所使用的方法也可以应用于其他的巡天望远镜产生的海量光谱的自动分类以及稀少天体的数据挖掘。
流行学习 恒星光谱分类 数据降维 K近邻算法 Manifold learning Stellar spectral classification Data reduction K-Nearest neighbor algorithm 
光谱学与光谱分析
2020, 40(9): 2913
作者单位
摘要
1 中国科学院国家天文台光学天文重点实验室, 北京 100101
2 中国科学院大学, 北京 100049
恒星光谱分类是研究恒星的基础性工作之一, 常用的光谱分类是基于20世纪70年代Morgan和Keenan建立起来的并逐步完善的MK分类系统。 然而基于MK规则的交互式决策分类系统对处理海量天文光谱数据存在着一定的困难。 目前光谱巡天一般采用的自动化分类则是模版匹配方法而忽略对谱线特征的测量。 怎样自动、 客观地提取海量光谱中的分类特征并应用这些特征进行分类可以对天体的物理化学性质的统计分析至关重要。 针对此问题, 通过机器学习和计算光谱的谱线指数结合的方法, 提取光谱特征, 并通过大数据分析定量地确定对光谱特征谱线的分类判据(数值化), 确定每一类光谱具有物理意义的特征谱线的强度分布。 首先对LAMOST DR4恒星光谱测量其谱线指数作为输入, 光谱的分类标记采用官方发布的分类结果。 使用XGBoost算法进行自动分类及特征排序, 从而获得已知或未知的对于分类决策最为敏感的谱线。 首先, 选取高信噪比(S/N>30)、 被LAMOST标记为B, A, F和M的恒星光谱数据, 总计约414万个。 然后, 对光谱数据计算谱线指数从而使其得到降维处理, 过滤冗余信息。 其次, 将处理后的恒星光谱数据随机划分为训练集和测试集, 通过适当调整算法参数, 用训练集得到所需要的分类决策树模型, 用测试集测试其稳定性和可用性, 以防止出现过拟合, 同时使用算法自带函数进行提取分类特征。 最后, 输出并整理实验中算法所得的决策树模型, 并挑选其概率比较大的分支作为最终的决策树模型。 通过实验, 可以发现在固定参数下, XGBoost所得的模型有一定的自适应性, 较少受数据集影响, 总体准确率可达88.5%; 同时其所输出的分类决策树与已知的特征较为吻合, 而且可以获得基于大数据的、 数值化的特征谱线对应分类的范围, 为完善基于特征的分类提供定量的规则。
光谱分类 线指数 决策树 Spectral classification Line index XGBoost XGBoost Decision tree LAMOST LAMOST 
光谱学与光谱分析
2019, 39(10): 3292
作者单位
摘要
1 山东大学(威海)机电与信息工程学院, 山东 威海 264209
2 山东大学(威海)数学与统计学院, 山东 威海 264209
在赫罗图中, M巨星位于红巨星的顶端, 是由类太阳的主序星逐渐演化而成的最明亮的一类恒星。 M巨星的研究对于理解银河系, 特别是银河系晕的性质至关重要。 中低分辨率的M巨星光谱, 常因为特征不显著、 噪声影响等因素而与M矮星的光谱混在一起, 不易区分。 现有研究一般利用CaH2+CaH3 vs. TiO5分子谱指数初步筛选M巨星光谱候选体, 再通过人眼检查确认。 但这种方法仅利用了三个巨星相关的分子带指数, 没有利用识别M巨星的其他光谱特征, 可能会由于噪声对指数的污染而导致分类错误。 而且, 人眼检查数量众多的光谱不仅耗时而且检查质量依赖于人的经验, 可靠性无法得到保证。 LAMOST望远镜自2011年开始先导巡天到2017年6月, 已经发布了900多万天体的光谱, 最新释放的光谱数据DR5包含了52万的M型星光谱数据, 需要采用自动、 准确、 有效的方法来区分其中不同光度级的M子样本。 本研究利用集成树模型分类M巨星和M矮星光谱, 分别采用随机森林、 GBDT、 XGBoost和LightGBM算法, 构建区分M巨星和M矮星的光度分类器。 四种分类器的测试准确率分别达到97.23%, 98%, 98.05%和98.32%。 实验表明LightGBM模型比其他三种集成树模型准确率更高, 训练时间更少, 分类效率更高。 对分类器模型获取到的重要特征分析的结果表明, 集成树算法有效提取并表达了用于区分M巨星和M矮星的结构性特征, 模型提取到的重要特征不仅包括原子线或分子带吸收的波长位置, 还包含了它们相邻的伪连续谱, 这与传统上计算指数所需要特征波长和伪连续谱是一致的。 相比于传统M巨星和M矮星分类方法, 集成树模型能够采用光谱中的多个重要特征组合进行分类, 避免仅依赖某一种特征易受噪声影响而得出错误的分类结果。 研究结果表明集成树算法在巨星识别过程中具有显著优势, 完全可以替代传统上只利用CaH和TiO指数的巨星光谱判别方法。 基于集成树模型对M型星光谱的分类研究, 为LAMOST高效、 准确地处理海量天体光谱提供了有效的方法。 随着LAMOST巡天项目不断开展, 积累的M巨星和M矮星样本将为研究银河系的结构和演化提供重要的数据基础。
M巨星 集成树 光谱分类 特征提取 M giants Ensemble tree Spectral classification Feature extraction 
光谱学与光谱分析
2019, 39(7): 2288
潘景昌 1,*王杰 1姜斌 1罗阿理 1,2[ ... ]郑强 3
作者单位
摘要
1 山东大学(威海)机电与信息工程学院, 山东 威海 264209
2 中国科学院光学天文重点实验室, 国家天文台, 北京 100012
3 烟台大学计算机与控制工程学院, 山东 烟台 264005
天体光谱中蕴含着非常丰富的天体物理信息, 通过对光谱的分析, 可以得到天体的物理信息、 化学成分以及天体的大气参数等。 随着LAMOST和SDSS等大规模巡天望远镜的实施, 将会产生海量的光谱数据, 尤其是LAMOST正式运行后, 每个观测夜产生大约2~4万条光谱数据。 如此海量的光谱数据对光谱的快速有效的处理提出了更高的要求。 恒星光谱的自动分类是光谱处理的一项基本内容, 该研究主要工作就是研究海量恒星光谱的自动分类技术。 Lick线指数是在天体光谱上定义的一组用以描述光谱中谱线强度的标准指数, 代表光谱的物理特性, 以每个线指数最突出的吸收线命名, 是一个相对较宽的光谱特征。 研究了基于Lick线指数的贝叶斯光谱分类方法, 对F, G, K三类恒星进行分类。 首先, 计算各类光谱的Lick线指数作为特征向量, 然后利用贝叶斯分类算法对三类恒星进行分类。 针对海量光谱的情况, 基于Hadoop平台实现了Lick线指数的计算, 以及利用贝叶斯决策进行光谱分类的方法。 利用Hadoop HDFS高吞吐率和高容错性的特点, 结合Hadoop MapReduce编程模型的并行优势, 提高了对大规模光谱数据的分析和处理效率。 该研究的创新点为: (1) 以Lick线指数作为特征, 基于贝叶斯算法实现恒星光谱分类; (2) 基于Hadoop MapReduce分布式计算框架实现Lick线指数的并行计算以及贝叶斯分类过程的并行化。
Lick线指数 恒星光谱分类 Lick line index Stellar spectral classification Hadoop Hadoop 
光谱学与光谱分析
2016, 36(8): 2651
作者单位
摘要
1 南阳理工学院计算机与信息工程学院,河南 南阳 473000
2 南阳医学高等专科学校卫生管理系,河南 南阳 473000
3 第三军医大学生物医学工程学院,重庆 400038
高光谱图像庞大的数据量给存储与传输带来巨大挑战,必须采用有效的压缩算法对其进行压缩。提出了一种基于分类的高光谱图像有损压缩算法。首先利用C均值算法对高光谱图像进行无监督光谱分类。根据分类图,针对每一类数据分别采用自适应KLT(Karhunen-Loève transform)进行谱间去相关;然后对每个主成分分别进行二维小波变换。为了获得最佳的率失真性能,采用EBCOT(Embedded Block Coding with Optimized Truncation)算法对所有的主成分进行联合率失真编码。实验结果表明,所提出算法的有损压缩性能优于其它经典的压缩算法。
有损压缩 高光谱图像 光谱分类 光谱去相关 lossy compression hyperspectral images spectral classification spectral decorrelation 
红外与激光工程
2016, 45(2): 0228003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!