作者单位
摘要
1 上海大学 微电子学院,上海 201800
2 中科院上海微系统与信息技术研究所,上海 200050
针对集成光子滤波器在3~5μm大气窗口波段的应用,文章提出了一种基于切趾光栅辅助反向耦合器(contra-DC)的中红外上下话路滤波器。采用互补光栅错位的方法进行相位调制,实现光谱旁瓣抑制,同时消除了传统光栅错位调制方法造成的光谱变形。仿真结果表明,文章所提器件可以实现22 dB的高旁瓣抑制比(SLSR),并且带通滤波谱顶部平坦,滤波谱线接近箱形。器件具有较低的插入损耗,直通端口插入损耗约为0.4 dB,下载端口插入损耗约为0.45 dB。
大气窗口 中红外 切趾 反向耦合器 旁瓣抑制比 atmospheric window mid infrared apodized contra-DC SLSR 
光通信研究
2023, 49(5): 67
作者单位
摘要
浙江大学光电科学与工程学院,浙江 杭州 310027
基于铌酸锂薄膜提出了一种新型的低损耗切趾光栅设计方案,在线性改变填充因子的同时根据布拉格条件对每个光栅周期进行调控。此方案不仅提高了向上衍射效率,还增加了向上衍射模斑和单模光纤模斑的重叠积分,极大地提高了耦合效率。1550 nm处对于TE模式耦合效率达到81.3%(0.90 dB),是目前已报道的基于无反射层铌酸锂薄膜的光栅耦合器设计方案中耦合效率最高的。考虑到实际工艺下波导存在刻蚀倾角,基于合理推广的布拉格条件同样对光栅周期进行调控,优化了带刻蚀倾角的切趾耦合光栅,耦合效率高达60.0%(2.22 dB)。
铌酸锂薄膜 低损耗 切趾光栅 布拉格条件 刻蚀倾角 
光学学报
2023, 43(19): 1913001
作者单位
摘要
中国海洋大学 信息科学与工程学部 物理与光电工程学院,青岛 266100
针对现阶段强度调制偏振光谱测量技术在光程差域内不同通道间存在频谱信息串扰的不足,采用加窗插值傅里叶变换法,研究了不同切趾函数对强度调制偏振光谱测量技术的影响。首先,进行强度调制偏振光谱测量技术理论分析,完成强度调制模块的设计;其次,根据强度调制模块的设计指标,模拟入射光的光强信息及采用不同切趾函数的信息解调复原过程;最终,对强度调制偏振光谱测量系统进行仿真,根据仿真模型结合高分辨率光谱仪、平行光管等器件完成偏振光谱测量装置的搭建,进行偏振光谱测量实验。研究结果表明,偏振光谱测量系统设计指标选择合适的切趾函数可以减少光强信息截断过程中造成的频谱能量泄露,使光程差域内不同通道之间的串扰信息减少、偏振光谱复原精度提高,不同切趾函数切趾处理后线偏振光的偏振度最小误差由0.076 8减小到0.001 4,偏振度接近1。
偏振光谱测量技术 高分辨率光谱仪 切趾函数 加窗插值傅里叶变换算法 频谱能量泄露 Measurement technique of polarization spectrum High resolution spectrometer Toe-cutting function Windowed interpolation FFT transformation algorithm Spectrum leakage effect 
光子学报
2023, 52(4): 0430001
作者单位
摘要
西安邮电大学电子工程学院, 陕西 西安 710121
在使用光纤光栅实现皮秒级别时延的基础上, 提出一种光纤光栅与单模光纤相结合的微秒级别级联结构, 该结构可以实现中心波长1 550~1 553 nm范围内, 间距为1 nm的窄波长反射型时延线, 共1, 1.5, 2和2.5 μs四种不同的时延。 将单波长反射的啁啾布拉格光纤光栅与103 m单模光纤连接构成延迟单元, 再利用光环形器将4个延迟单元级联并使用内半径为3 cm的光纤绕线盘, 将四种延时单元的传输光纤进行整合。 借助光纤光栅的反射镜作用, 控制不同波长光信号通过不同的传输距离, 从而达到时延目的。 本文通过对啁啾布拉格光纤光栅的反射谱进行仿真分析, 发现相邻反射谱的旁瓣会出现交叠现象, 因此使用六个切趾函数对旁瓣滤除。 结果显示: 不同切趾函数的滤除效果也不同, 能够完全滤除旁瓣并且对反射谱包络影响最小的是柯西切趾函数, 经柯西切趾后能使不同波长光信号在对应中心波长1 nm范围内反射率达到1, 而其他位置均为0。 由于使用光纤绕线盘整合延迟单元传输光纤会产生一定损耗, 因此对弯曲损耗进行仿真分析, 结果表明: 弯曲半径相同时, 损耗与工作波长成正比; 工作波长相同时, 弯曲损耗与弯曲半径成反比。 当弯曲半径大于2.9 cm时, 弯曲损耗曲线变化平缓并趋于0, 因此当光纤绕线盘内半径为3 cm时保证了在减小延迟模块体积的同时又不会有过大的损耗。 通过TDS784D型示波器对频率为2 000 Hz的信号经不同传输距离后的波形进行测试, 结果显示经3 m和5 km传输线后信号的各项参数基本保持不变, 经过长距离传输后, 依然能保持原信号特性, 因此使用103 m传输线可达到延迟目的。 使用W-GGL型光功率计对不同频率下的输出功率进行测量, 与直光纤的输出功率相比, 当弯曲半径为2~3 cm时偏差较大, 等于3 cm时偏差为0.18 dBm, 大于3 cm时则无限趋近, 因此设置绕线盘内半径为3 cm符合光纤延迟线的损耗范围。
光纤延迟线 光纤光栅级联结构 反射谱 切趾函数 弯曲损耗 Fiber delay line Fiber grating cascade structure Reflection spectrum Apodization function Bending loss 
光谱学与光谱分析
2022, 42(7): 2241
作者单位
摘要
1 西安交通大学 电子陶瓷与器件教育部重点实验室, 多功能材料与结构教育部重点实验室, 国际电介质研究中心, 电子科学与工程学院, 陕西 西安 710049
2 江西匀晶光电技术有限公司, 江西 九江332000
近年来,片上光子集成技术备受关注并飞速发展, 但在光纤与芯片、芯片与芯片上实现高效、高可靠性的光耦合仍是难题。光栅因其制作简单, 位置灵活, 对准容差大及可实现片上测试等一系列优点而备受研究者的关注。目前在绝缘体上硅(SOI)平台和绝缘体上铌酸锂(LNOI)平台上已开发出大量的光栅耦合器件, 并获得较高的耦合效率和大带宽。该文主要介绍光栅耦合器的工作原理和主要性能指标, 阐述了均匀光栅、倾斜光栅、闪耀光栅和切趾光栅耦合的特点及现阶段进展, 并对具有代表性的一维光栅性能指标进行了比较。结果表明, 分布式布喇格反射镜和金属反射镜可有效地提升光栅耦合效率。此外, 该文还介绍了基于LNOI平台的几种光栅耦合器, 其可帮助研究者们梳理光栅耦合器的发展历程、研究现状及各耦合器的特点, 为未来研究提供一定的参考。
光栅耦合 绝缘体上硅(SOI) 耦合效率 闪耀光栅 切趾光栅 grating coupling silicon-on-insulator(SOI) coupling efficiency blazed grating apodized grating 
压电与声光
2022, 44(4): 570
作者单位
摘要
1 北京无线电测量研究所,北京 100854
2 北京航天微电科技有限公司,北京 100854
在传统的抽指加权技术基础上,该文提出了一种自适应抽指加权技术。通过计算确定抽指加权的起始位置和加权数值,能对切趾换能器进行部分指条的抽指加权。研究结果表明,根据该文提出方法研制的一款声表面波滤波器,其频率为61, 60 MHz,-1 dB相对带宽为3, 7%,带外抑制大于45 dB,矩形度为1, 4,器件的综合性能得到改善。
抽指加权 自适应 切趾 加权位置 加权数值 声表面波滤波器 withdrawal weighted adaptive apodization weighted position weighted value SAW filter 
压电与声光
2022, 44(2): 250
李柱 1,2王长涛 1,2孔维杰 1,2王彦钦 1,2[ ... ]罗先刚 1,2,*
作者单位
摘要
1 中国科学院光电技术研究所微细加工光学技术国家重点实验室,四川 成都 610209
2 中国科学院大学光电学院,北京 100049
3 中国人民解放军军事科学院国防科技创新研究院,北京 100071
切趾在成像和光通信领域得到了重要的应用。传统的切趾方法基于相位或者振幅调制,存在工作带宽窄或者分辨力低的问题。本文提出了一种宽带消色差的超表面滤波器,可以在不损失空间分辨力的情况下实现切趾成像。通过该滤波器在整个可见光波段完成了几乎无色散的相位调制。仿真结果表明,超表面滤波器的聚焦效率是相位滤波器的两倍;其成像对比度可以提升至高斯滤波器的三倍。通过我们的方法,在400 nm到700 nm的可见光波段内,点扩散函数的旁瓣能被压缩到10-5数量级,同时能够实现衍射极限甚至超衍射的分辨力。
切趾 宽带 无色散 超表面 apodization broadband dispersionless metasurface 
光电工程
2021, 48(5): 200466
作者单位
摘要
武汉理工大学 光纤传感技术国家工程实验室,武汉430070
针对小范围热源温度探测的需求,在线制备了密集切趾的光纤光栅阵列,采用光波长时域反射解调技术和光时域分段解调技术对切趾光栅阵列传感网络信号进行解调,实现了对小范围热源温度变化的精确测量。模拟了高斯切趾光栅的旁瓣抑制效果,结果显示高斯系数G=4时,可获得较好的谱型和较高的旁瓣抑制比。采用在线光栅阵列制备系统制备了旁瓣抑制比为20.74 dB的密集切趾光栅阵列,温度实验结果显示,传感网络的时域分段精度可达1 m,空间分辨率可达10 cm,温度灵敏度为10.15 pm/℃。该系统可应用于电缆廊道、地铁等环境下的小范围热源温度探测。
光纤传感器 光纤光栅阵列 切趾光栅 密集光栅阵列 温度传感 Fiber sensors Fiber grating array Apodized Bragg grating Dense grating array Temperature sensing 
光子学报
2021, 50(7): 24
王孙晨 1,3张磊 2,*薛模根 1,3吴云智 1,3[ ... ]薛莹 1,3
作者单位
摘要
1 中国人民解放军陆军炮兵防空兵学院 信息工程系,合肥23003
2 中国科学技术大学 精密机械与精密仪器系,合肥3007
3 偏振光成像探测技术安徽省重点实验室,合肥2001
针对空间调制型全偏振成像系统中二维傅里叶变换解调算法的优化问题,提出贝塞尔修正的方向选择性二维汉宁切趾优化解调算法,对比分析了不同切趾函数主瓣宽度与旁瓣衰减的特性.相比于传统汉宁窗,该算法旁瓣抑制能力提高了12.89 dB,主瓣宽度为0.065π,同时在频谱滤波过程中对相对位置在对角线方向上频谱信息有良好抑制作用.搭建了基于琼斯矩阵的全偏振成像探测系统,并通过实验进行验证.实验结果表明:经过优化的解调算法全偏振分量的解调精度平均提高了9.48%,验证了优化解调算法的准确性和有效性.
全偏振成像 空间调制 干涉图 傅里叶变换 琼斯矩阵 频域滤波 切趾 Full polarization imaging Spatial modulation Interferogram Fourier transform Jones matrix Frequency domain filtering Apodization 
光子学报
2020, 49(12): 146
李志伟 1,2,*施海亮 1,2罗海燕 1,2熊伟 1,2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
干涉光谱技术在大气遥感、 天文探测及地物勘察等诸多领域的应用是当前国内外研究热点, 光谱重构作为遥感数据处理的重要环节与探测精度紧密相关。 干涉数据由于有限光程差采样导致复原光谱出现频率泄露, 切趾函数在光谱重构过程中可以起到平滑光谱、 保持复原光谱和其他类型分光技术探测光谱一致性的作用, 但同时会造成重构光谱的分辨率下降。 已有研究表明切趾函数并没有提高反演精度, 同时多个典型大气遥感载荷地面数据处理过程中并未使用切趾函数。 空间外差光谱技术由于其诸多优点在国内外引起广泛关注, 中科院安光所基于该技术成功研究出用于大气CO2探测的原理样机。 信噪比是光谱仪的核心指标之一, 从信噪比、 光谱分辨率和探测精度之间的关系出发研究切趾函数在干涉数据光谱重构中的影响。 针对当前传统切趾函数并没有达到最优旁瓣抑制效果, 以诺顿-比尔切趾函数为基础, 在分辨率降低相同的情况下, 获取最大的旁瓣抑制程度为判据构造了10种不同光谱展宽程度的切趾函数。 利用SCIATRAN辐射传输模型分析了大气CO2遥感探测中不同气体浓度造成的大气层顶的辐亮度差异, 推导了典型条件下不同光谱分辨率满足1%探测精度需求的信噪比要求。 以实验室空间外差光谱仪样机参数为基础, 通过仿真干涉数据和本文构造切趾函数分析了不同切趾程度下光谱分辨率和信噪比的变化关系。 最后利用实验室研制的样机开展了实验验证, 通过观测稳定均匀积分球辐射源获取干涉数据在不切趾的情况下计算信噪比, 以及干涉数据进行不同程度切趾后复原光谱信噪比。 仿真和试验结果表明干涉数据由于切趾对噪声的抑制信噪比逐渐升高, 同时造成光谱分辨率逐渐下降, 而探测精度由于分辨率下降对光谱信噪比的要求也逐渐升高。 探测精度对信噪比的需求提高明显高于切趾作用下光谱信噪比的升高趋势, 仿真数据和实测数据信噪比分别在切趾程度大于1.6倍和1.8倍的情况下低于探测精度对仪器信噪比需求, 即白噪声在噪声中占主导的情况下不切趾更有利于探测精度的保障。 该研究结果可以作为干涉数据光谱重构的参考。
遥感 空间外差光谱技术 切趾函数 信噪比 光谱分辨率 Remote sensing Spatial heterodyne spectroscopy Apodization function Signal to noise ratio Spectral resolution 
光谱学与光谱分析
2020, 40(1): 29

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!